Streptomyces lividans displays a distinct dependence on copper to fully initiate morphological development. Evidence has accumulated to implicate the participation of an extracytoplasmic cuproenzyme in morphogenesis. In the present study, we show that GlxA fulfils all criteria to be that cuproenzyme. GlxA is membrane associated and has an active site consisting of a mononuclear copper and a cross-linked Y-C cofactor. The domain organization of the tertiary structure defines GlxA as a new structural member of the mono-copper oxidase family, with copper co-ordination geometry similar to, but spectroscopically distinct from fungal galactose oxidase (Gox). EPR spectroscopy reveals that the oxidation of cupric GlxA generates a protein radical residing on the Y-C cross-link. A variety of canonical Gox substrates (including D-galactose) were tested but none were readily turned over by GlxA. A glxA null-mutant leads to loss of glycan accumulation at hyphal tips and consequently a drastically changed morphology both on solid substrates and in liquid-grown environments, a scenario similarly observed in the absence of the neighbouring glycan synthase CslA (cellulase synthase-like protein). In addition the glxA mutant has lost the stimulation of development by copper, supporting a model whereby the enzymatic action of GlxA on the glycan is required for development and morphology. From a biotechnology perspective, the open mycelium morphology observed with the glxA mutant in submerged culture has implications for use as an enzyme production host.
The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway.
In disease-suppressive soils, microbiota protect plants from root infections. Bacterial members of this microbiota have been shown to produce specific molecules that mediate this phenotype. To date, however, studies have focused on individual suppressive soils and the degree of natural variability of soil suppressiveness remains unclear. Here, we screened a large collection of field soils for suppressiveness to Fusarium culmorum using wheat ( Triticum aestivum ) as a model host plant. A high variation of disease suppressiveness was observed, with 14% showing a clear suppressive phenotype. The microbiological basis of suppressiveness to F. culmorum was confirmed by gamma sterilization and soil transplantation. Amplicon sequencing revealed diverse bacterial taxonomic compositions and no specific taxa were found exclusively enriched in all suppressive soils. Nonetheless, co-occurrence network analysis revealed that two suppressive soils shared an overrepresented bacterial guild dominated by various Acidobacteria. In addition, our study revealed that volatile emission may contribute to suppression, but not for all suppressive soils. Our study raises new questions regarding the possible mechanistic variability of disease-suppressive phenotypes across physico-chemically different soils. Accordingly, we anticipate that larger-scale soil profiling, along with functional studies, will enable a deeper understanding of disease-suppressive microbiomes.
Streptomycetes are proficient producers of enzymes and antibiotics. When grown in bioreactors, these filamentous microorganisms form mycelial pellets that consist of interconnected hyphae. We here employed a flow cytometry approach designed for large particles (COPAS) and demonstrate that liquid-grown Streptomyces cultures consist of two distinct populations of pellets. One population consists of mycelia with a constant mean diameter of approximately 260 μm, whereas the other population contains larger mycelia whose diameter depends on the strain, the age of the culture, and medium composition. Quantitative proteomics analysis revealed that 37 proteins differed in abundance between the two populations of pellets. Stress-related proteins and biosynthetic proteins for production of the calcium-dependent antibiotic were more abundant in the population of large mycelia, while proteins involved in DNA topology, modification, or degradation were overrepresented in the population of small mycelia. Deletion of genes for the cellulose synthase-like protein CslA and the chaplins affected the average size of the population of large pellets but not that of small pellets. Considering the fact that the production of enzymes and metabolites depends on pellet size, these results provide new leads toward rational strain design of Streptomyces strains tailored for industrial fermentations.
Cells that are part of a multicellular structure are typically embedded in an extracellular matrix, which is produced by the community members. These matrices, the composition of which is highly diverse between different species, are typically composed of large amounts of extracellular polymeric substances, including polysaccharides, proteins, and nucleic acids. The functions of all these matrices are diverse: they provide protection, mechanical stability, mediate adhesion to surfaces, regulate motility, and form a cohesive network in which cells are transiently immobilized. In this review we discuss the role of matrix components produced by streptomycetes during growth, development and attachment. Compared to other bacteria it appears that streptomycetes can form morphologically and functionally distinct matrices using a core set of building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.