Soil hydraulic properties control the provision of hydrological services. Vegetation and topography influence these properties by altering soil structure and porosity. The underlying mechanisms are not yet fully understood for the high Andean region. In this study, we examined how vegetation and topographic attributes are related to soil hydraulic properties and soil pore structure in young volcanic ash soils, and further correlated them to soil texture, organic carbon, and root characteristics to explain these relationships. In a 0.7 km 2 study site located in the Andean páramo of northern Ecuador, we measured soil water retention, saturated hydraulic conductivity, bulk density (BD), and pore size distribution parameters on eight soil profiles with contrasting vegetation types (cushion-forming plants vs. tussock grasses) and topographic positions (summit vs. hillslope). We observed significant differences in soil hydraulic properties and soil pore structure in the uppermost horizons by vegetation type, whereas topography had a minor effect. In the A horizons, we found higher water retention at saturation and field capacity (10%-14%), higher total available water (8%-15%), and higher saturated hydraulic conductivity (4-12 times) under cushion-forming plants compared to tussock grasses. The elevated values under cushion plants were attributed to the presence of larger pores, lower soil BD, and higher soil organic carbon content as a result of coarser root systems. Total available water was generally high (0.34-0.40 cm 3 cm À3 ), and locally not associated with any soil property. The higher water retention in soils under cushion vegetation can enhance soil water storage for plants and the regulation of water flows during prolonged
Abstract. Vegetation plays a key role in the hydrological and biogeochemical cycles. It can influence soil water fluxes and transport, which are critical for chemical weathering and soil development. In this study, we investigated soil water balance and solute fluxes in two soil profiles with different vegetation types (cushion-forming plants vs. tussock grasses) in the high Ecuadorian Andes by measuring soil water content, flux, and solute concentrations and by modeling soil hydrology. We also analyzed the role of soil water balance in soil chemical weathering. The influence of vegetation on soil water balance and solute fluxes is restricted to the A horizon. Evapotranspiration is 1.7 times higher and deep drainage 3 times lower under cushion-forming plants than under tussock grass. Likewise, cushions transmit about 2-fold less water from the A to lower horizons. This is attributed to the higher soil water retention and saturated hydraulic conductivity associated with a shallower and coarser root system. Under cushion-forming plants, dissolved organic carbon (DOC) and metals (Al, Fe) are mobilized in the A horizon. Solute fluxes that can be related to plant nutrient uptake (Mg, Ca, K) decline with depth, as expected from biocycling of plant nutrients. Dissolved silica and bicarbonate are minimally influenced by vegetation and represent the largest contributions of solute fluxes. Soil chemical weathering is higher and constant with depth below tussock grasses but lower and declining with depth under cushion-forming plants. This difference in soil weathering is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solute fluxes, and chemical weathering throughout the soil profile.
<p>The Ecuadorian p&#225;ramo, a neotropical ecosystem located in the upper Andes, acts as a constant source of high-quality water. It also stores significant amounts of C at the regional scale. In this region, volcanic ash soils sustain most of the paramo, and C storage results partly from their propensity to accumulate organic matter. Vegetation type is known to influence the balance between plant C inputs and soil C losses, ultimately affecting the soil organic C (SOC) content and stock. Tussock-forming grass (spp. Calamagrostis Intermedia; TU), cushion-like plants (spp. Azorella pedunculata; CU) and shrubs and trees (Polylepis stands) are commonly found in the p&#225;ramo. Our understanding of SOC stocks and dynamics in the p&#225;ramo remains limited, despite mounting concerns that human activities are increasingly affecting vegetation and potentially, the capacity of these ecosystems to store C.</p><p>Here, we compare the organic C content and stock in soils under tussock-forming grass (spp. Calamagrostis Intermedia; TU) and soils under cushion-like plants (spp. Azorella pedunculata; CU). The study took place at Jatunhuayco, a watershed on the western slopes of Antisana volcano in the northern Ecuadorian Andes. Two areas of similar size (~0.35 km<sup>2</sup>) were surveyed. Fourty soil samples were collected randomly in each area to depths varying from 10 to 30 cm (A horizon) and from 30 to 75 cm (2Ab horizon). The soils are Vitric Andosols and the 2Ab horizon corresponds to a soil buried by the tephra fall from the Quilotoa eruption about 800 yr. BP. Sixteen intact soil samples were collected in Kopecky's cylinders for bulk density (BD) determination of each horizon.</p><p>The average SOC content in the A horizon of the CU sites (9.4&#177;0.5%) is significantly higher (Mann-Whitney U test, p<0.05) than that of the TU sites (8.0&#177;0.4%), probably reflecting a larger input of root biomass from the cushion-forming plants. The 2Ab horizon contains less organic C (i.e. TU: 4.3&#177;0.3% and CU: 4.0&#177;0.4%) than the A horizon, but the SOC contents are undistinguishable between the two vegetation types. This suggests that the influence of vegetation type on SOC is limited to the A horizon. The average SOC stocks (in the first 30 cm from the soil) for TU and CU are 20.04&#177;1.1 and 18.23&#177;1.0 kg/m<sup>2</sup>,<sup></sup>respectively. These values are almost two times greater than the global average reported for Vitric Andosols (~8.2 kg/m<sup>2</sup>&#160;), but are lower than the estimates obtained for some wetter Andean p&#225;ramos (22.5&#177;5 kg/m<sup>2</sup>, 270% higher rainfall) from Ecuador. Our stock values further indicate that vegetation type has a limited effect on C storage in the young volcanic ash soils found at Jatunhuyaco. Despite a higher SOC content, the CU soils store a stock of organic C similar to that estimated for the TU soils. This likely reflects the comparatively lower BD of the former soils (650&#177;100 vs. 840&#177;30 kg/m<sup>3</sup>). Additional studies are needed in order to establish the vegetation-related factors driving the SOC content and stability in the TU and CU soils.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.