Artificial insemination is an important assisted reproductive technology that has been applied in several mammalian species. However, successful cryopreservation of semen of South American camelids has been limited, hindering the commercial application of artificial insemination in alpaca species. In this scenario, the addition of antioxidants to semen extenders provides a strategy to improve the freezability of mammalian sperm. Bioactive metabolites from natural extracts of black maca have shown valuable antioxidant properties. Thus, the objective of this study was to evaluate the effect of the addition of atomized black maca in the freezing medium of epididymal spermatozoa of alpacas. Fifteen pairs of epididymis were collected from a local slaughterhouse. Each sample was divided into six groups: (1) fresh, (2) yolk medium (YM), (3) 10 mg/mL maca, (4) 20 mg/mL maca, (5) 30 mg/mL maca, and (6) resveratrol (as an antioxidant control). Sperm cryopreservation was performed through the slow freezing method. Markers associated with functionality, such as motility, viability, and plasma membrane integrity, as well as markers associated with oxidative damage, such as DNA integrity, total ROS production, and mitochondrial function, were analyzed. The results show that the supplementation with black maca (20 mg/mL) improved the sperm motility, viability, plasma membrane integrity, and mitochondrial function evaluated according to an index of formazan deposits. Similarly, the ROS production decreased with maca at 20 mg/mL, although the DNA integrity did not show any differences among the groups. These results suggest that maca at 20 mg/mL has cytoprotective effects during freezing/thawing of epididymal sperm of alpaca species. Further research will be focused on assessing the effects of maca supplementation on semen extenders by using biomolecular markers (proAKAP4) associated with fertility.
Physalis peruviana L. often known as goldenberry, has increased its commercial growth in the international market in recent years due to its nutritional value and antioxidant potential. This situation has enabled countries such as Peru to increase their production in order to meet the global demand. However, investigations about the genetic diversity of cultivated and wild populations of goldenberry are still in their early stages. FISH mapping of 5s and 45s rDNA loci and flow cytometry estimation of nuclear DNA content were used to assess genetic differences between wild and cultivated goldenberry populations from Ayacucho and Cajamarca. The majority of metaphases had six 5s rDNA sites for all populations and two and four 45s rDNA sites for the cultivated and wild populations, respectively. We were able to characterize nine different types of chromosomes based on their morphology, fluorescence, rDNA location, and conservation across populations by analyzing the chromosomes that contained rDNA. Furthermore, cultivated populations had more nuclear DNA (13.262±0.087 pg) than wild populations (12.955±0.086 pg). The results show genetic differences between wild and cultivated populations of goldenberry at molecular cytogenetic level as well as in genome size. These findings establish a precedent for future cytogenetic and genomic studies in goldenberry populations, enabling future breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.