The utility of blood-based omic profiles for linking environmental exposures to their potential health effects was evaluated in 649 individuals, drawn from the general population, in relation to tobacco smoking, an exposure with well-characterised health effects. Using disease connectivity analysis, we found that the combination of smoking-modified, genome-wide gene (including miRNA) expression and DNA methylation profiles predicts with remarkable reliability most diseases and conditions independently known to be causally associated with smoking (indicative estimates of sensitivity and positive predictive value 94% and 84%, respectively). Bioinformatics analysis reveals the importance of a small number of smoking-modified, master-regulatory genes and suggest a central role for altered ubiquitination. The smoking-induced gene expression profiles overlap significantly with profiles present in blood cells of patients with lung cancer or coronary heart disease, diseases strongly associated with tobacco smoking. These results provide proof-of-principle support to the suggestion that omic profiling in peripheral blood has the potential of identifying early, disease-related perturbations caused by toxic exposures and may be a useful tool in hazard and risk assessment.
Motivation: The field of toxicogenomics (the application of ‘-omics’ technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available.Results: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal.Availability and implementation:
http://www.dixa-fp7.euContact:
d.hendrickx@maastrichtuniversity.nl; info@dixa-fp7.euSupplementary information:
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.