Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.
Pasteurization decreases concentrations of most cytokines and lactoferrin in DHM. TGF-β2, a protective intestinal cytokine, has comparable concentrations in HDMF to MHM despite pasteurization.
Background Erratic regulation of glucose metabolism including hyperglycemia is a common condition of premature infants and is associated with increased morbidity and mortality. Objective To examine histological and ultra-structural differences in the endocrine pancreas in fetal (throughout gestation) and neonatal baboons. Methods Twelve fetal baboons were delivered at 125 days (d) gestational age (GA), 140dGA, or 175dGA. Eight animals were delivered at term (185dGA); half were fed for 5d. Seventy-three non-diabetic adult baboons were used for comparison. Pancreatic tissue was studied utilizing light microscopy, confocal imaging and electron microscopy. Results The fetal and neonatal endocrine pancreas islet architecture became more organized as GA advanced. The percent areas of α-β-δ-cell type were similar within each fetal and newborn GA (NS), but were higher than the adults (P<0.05) regardless of GA. The ratio of β-cells within the islet (whole and core) increased with gestation (P<0.01). Neonatal baboons who survived for 5 days (feeding), had a 2.5-fold increase in pancreas weight compared to their counterparts euthanized at birth (P=0.01). Endocrine cells were found amongst exocrine ductal and acinar cells in 125,140 and 175dGA fetuses. Subpopulation of cells that co-expressed trypsin and glucagon/insulin show the presence of cells with mixed endo-exocrine lineage in fetuses. Conclusions The fetal endocrine pancreas has no prevalence of a of α-β-δ-cell type with larger endocrine cell percent areas than adults. Cells with mixed endocrine/exocrine phenotype occur during fetal development. Developmental differences may play a role in glucose homeostasis during the neonatal period and may have long term implications.
Aberrant glucose regulation is common in preterm and full‐term neonates leading to short and long‐term morbidity/mortality; however, glucose metabolism in this population is understudied. The aim of this study was to investigate developmental differences in hepatic gluconeogenic pathways in fetal/newborn baboons. Fifteen fetal baboons were delivered at 125 day (d) gestational age (GA), 140d GA, and 175d GA (term = 185d GA) via cesarean section and sacrificed at birth. Term and healthy adult baboons were used as controls. Protein content and gene expression of key hepatic gluconeogenic molecules were measured: cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK‐C and PEPCK‐M), glucose‐6‐phosphatase‐alpha (G6Pase‐α), G6Pase‐β, fructose‐1,6‐bisphosphatase (FBPase), and forkhead box‐O1 (FOXO1). Protein content of PEPCK‐M increased with advancing gestation in fetal baboons (9.6 fold increase from 125d GA to 175d GA, P < 0.001). PEPCK‐C gene expression was consistent with these developmental differences. Phosphorylation of FOXO1 was significantly lower in preterm fetal baboons compared to adults, and gene expression of FOXO1 was lower in all neonates when compared to adults (10% and 62% of adults respectively, P < 0.05). The FOXO1 target gene G6Pase expression was higher in preterm animals compared to term animals. No significant differences were found in G6Pase‐α, G6Pase‐β, FOXO1, and FBPase during fetal development. In conclusion, significant developmental differences are found in hepatic gluconeogenic molecules in fetal and neonatal baboons, which may impact the responses to insulin during the neonatal period. Further studies under insulin‐stimulated conditions are required to understand the physiologic impact of these maturational differences.
This study compared the effect of container material type on macronutrient changes in human breast milk (HBM) during frozen storage. HBM was collected from breastfeeding mothers and baseline macronutrients were analyzed and recorded. The HBM was aliquoted into milk storage containers of five commonly used materials (low-density polyethylene (LDPE), polypropylene (PP), glass, stainless steel, and silicone). The samples were frozen in a standard freezer (-20°F) for 30, 60, and 180 days prior to thawing and retesting macronutrient values. In the 155 samples analyzed, macronutrient changes among different types of storage materials were insignificant at 30 and 60 days of frozen storage. When comparing macronutrients at baseline to 180 days, there was a significant decrease in protein value over time in LDPE containers as compared to silicone containers (p=0.001). Likewise, there was a significant decrease in total calories from baseline to 180 days in both PP and LDPE containers compared to silicone (p=0.046 and 0.013, respectively). While not significant for short-term storage, HBM has losses of macronutrients (protein) with long-term storage in LDPE and PP plastics. These differences could have major nutritional impact on growth, particularly to infants born prematurely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.