Livestock grazing can affect habitat quality for grasshoppers through effects on food and oviposition site availability, microclimate, and other factors. Because of this, some authors have suggested that grazing programs can be used to help manage pest grasshopper populations. In a 6-yr study, we controlled access of cattle to replicated experimental plots on an Agropyron spicatum/Poa sandbergii pasture to create consistent year-to-year differences in postgrazing plant cover, with resultant affects on microclimate. After sampling grasshoppers multiple times after grazing treatments each summer, we found evidence of between-treatment differences in grasshopper abundance for the entire assemblage during 4 of the 6 yr. Some species, including Melanoplus sanguinipes (perhaps the worse rangeland grasshopper pest in the western United States), tended to be more abundant on ungrazed plots, whereas Melanoplus gladstoni often had greater densities on heavily-grazed plots. The effect of grazing on grasshopper densities in this study was lower in magnitude and less consistent among years than in a study we conducted simultaneously at a nearby site where the vegetation was dominated by the exotic species crested wheatgrass (Agropyron cristatum). Our results generally support proposals that grazing could be used to reduce pest grasshopper densities, although the effectiveness of a particular grazing scheme may vary among sites, years, and grasshopper and vegetation assemblages.
The short-term behavioral responses of adult grasshoppers, Melanoplus sanguinipes (F.) (Orthoptera: Acrididae), were examined after they experienced changes in microclimate when beingforced to change positions in their habitat. It was also determined if and when behavioral tactics allowed adults to achieve body temperatures within their preferred range. The preferred or set-point range, here taken as the interquartile range of temperatures selected on a laboratory thermal gradient, was estimated to be 37.4–40.5°C. In the field, adults progressed through a relatively consistent daily sequence of behaviors, basking on the soil early in the day, but moving onto vegetation as temperatures increased. Although basking allowed grasshoppers to maximize body temperature within the available range, as much as 7°C in excess of air temperature, they could not attain preferred body temperatures until soil surface temperatures reach about 35°C. Basking was more effective in grazed than ungrazed pastures due to a lower degree of shading of the soil surface. As soil surface temperatures exceeded 35°C, grasshoppers could achieve body temperatures within the preferred range by moving to the appropriate height on vegetation. These results illustrate the advantage of assessing behavior in the field in relation to preferred body temperatures determined in the laboratory.
Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.
Growing concerns about the environmental consequences of chemically based pest control strategies have precipitated a call for the development of integrated, ecologically based pest management programs. Carabid or ground beetles (Coleoptera:Carabidae) are an important group of natural enemies of common agricultural pests such as aphids, slugs, and other beetles. Alfalfa (Medicago sativa L.) is one of the most common forage crop species in the semi-arid western United States. In 2011, Montana alone produced 4.0 × 10(6 )Mg of alfalfa on 8.1 × 10(5 )ha for gross revenue in excess of US$4.3 × 10(8), making it the third largest crop by revenue. We conducted our study over the 2012 and 2013 growing seasons. Each year, our study consisted of three sites each with adjacent systems of monoculture alfalfa, alfalfa nurse cropped with hay barley, and an uncultivated refuge consisting of a variety of forbs and grasses. Carabid community structure differed and strong temporal shifts were detected during both 2012 and 2013. Multivariate fuzzy set ordination suggests that variation in canopy height among the three vegetation systems was primarily responsible for the differences observed in carabid community structure. Land managers may be able to enhance carabid species richness and total abundance by creating a heterogeneous vegetation structure, and nurse cropping in particular may be effective strategy to achieve this goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.