Functional ␥-secretase inhibitors (FGSIs) can block the cleavage of several transmembrane proteins including amyloid precursor protein (APP), and the cell fate regulator Notch-1. FGSIs, by inhibiting APP processing, block the generation of amyloid  (A) peptides and may slow the development of Alzheimer's disease. FGSIs used to inhibit APP processing may disrupt Notch processing, thus interfering with cell fate determination. Described herein is a FGSI-mediated gastrointestinal toxicity characterized by cell population changes in the ileum of rats, which are indicative of Notch signaling disruption. Microarray analysis of ileum from FGSItreated rats revealed differential expression responses in a number of genes indicative of Notch signaling perturbation, including the serine protease adipsin. We were able to show that FGSI-treated rats had elevated levels of adipsin protein in gastrointestinal contents and feces, and by immunohistochemistry demonstrated that adipsin containing ileum crypt cells were increased in FGSI-treated rats. The mouse Adipsin proximal promoter contains a putative binding site for the Notchinduced transcriptional regulator Hes-1, which we demonstrate is able to bind Hes-1. Additional studies in 3T3-L1 preadipocytes demonstrate that this FGSI inhibits Hes-1 expression while up-regulating adipsin expression. Overexpression of Hes-1 was able to down-regulate adipsin expression and block pre-adipocyte differentiation. We propose that adipsin is a Hes-1-regulated gene that is de-repressed during FGSI-mediated disruption of Notch/Hes-1 signaling. Additionally, the aberrant expression of adipsin, and its presence in feces may serve as a noninvasive biomarker of gastrointestinal toxicity associated with perturbed Notch signaling.The small intestine can be a site of injury associated with drug treatment (1-3). Tissue organization within the small intestine relies upon a small number of stem cells in the intestinal crypts to continuously produce several types of differentiated cells that together comprise the villous epithelium (enterocytes, goblet cells, paneth cells, and enteroendocrine cells) (4). This rapid maturation, transport, and cell loss make the small intestine particularly susceptible to toxicants that affect cell differentiation and proliferation (5, 6). The process by which dividing intestinal epithelial stem cells in the crypt produce differentiated progeny requires the transcriptional regulation of genes necessary for cell fate determination. The control of this cell fate determination pathway is dependent on a number of positive and negative transcription factors that operate in undifferentiated precursor cells of the crypt (6 -8). For example, the bHLH transcriptional repressor protein Hairy and Enhancer of split homologue-1 (Hes-1) 1 has been shown to be important in determining whether differentiating intestinal epithelial stem cells adopt an exocrine/secretory (goblet cell, enteroendocrine cell, paneth cell) fate or an absorptive (enterocyte) fate (9). Expression of Hes-1 is kn...
The safety of pharmaceuticals is typically assessed in the dog and rat prior to investigation in humans. As a result, a greater understanding of adverse effects in these preclinical testing species would improve safety assessment. Despite this need, there is a lack of tools to examine mechanisms and identify biomarkers in the dog. To address this issue, we developed an Affymetrix-based oligonucleotide microarray capable of monitoring the expression of thousands of canine genes in parallel. The custom canine array contains 22,774 probe sets, consisting of 13,729 canine and 9045 human-derived probe sets. To improve cross-species hybridization with human-derived probes, the detection region was moved from the variable 3' UTR to the more homologous coding region. Testing of this strategy was accomplished by comparing hybridization of naive dog liver RNA to the canine array (coding region design) and human U133A array (standard 3' design). Although raw signal intensity was greater with canine-specific probe sets, human-derived probes detected the expression of additional liver transcripts. To assess the ability of this tool to detect differential gene expression, the acute phase response was examined in beagle dogs given lipopolysaccharide (LPS). Hepatic gene expression 4 and 24 h post-LPS administration was compared to gene expression profiles of vehicle-treated dogs (n=3/group). Array data was consistent with an acute inflammatory response, with transcripts for multiple cytokines and acute phase proteins markedly induced 4 h after LPS challenge. Robust changes in the expression of transcripts involved with glucose homeostasis, biotransformation, and extracellular matrix remodeling were observed 24 h post-dose. In addition, the canine array identified several potential biomarkers of hepatic inflammation. Strong correlations were found between gene expression data and alterations in clinical chemistry parameters such as serum amyloid A (SAA), albumin, and alkaline phosphatase (ALP). In summary, this new genomic tool successfully detected basal canine gene expression and identified novel aspects of the acute phase response in dog that shed new light on mechanisms underlying inflammatory processes.
Chronic kidney disease (CKD) often culminates in renal failure as a consequence of progressive interstitial fibrosis and is an important cause of illness and death in dogs. Identification of disease biomarkers and gene expression changes will yield valuable information regarding the specific biological pathways involved in disease progression. Toward these goals, gene expression changes in the renal cortex of dogs with X-linked Alport syndrome (XLAS) were examined using microarray technology. Extensive changes in inflammatory, metabolic, immune, and extracellular matrix biology were revealed in affected dogs. Statistical analysis showed 133 genes that were robustly induced or repressed in affected animals relative to age-matched littermates. Altered expression of numerous major histocompatibility complex (MHC) molecules suggests that the immune system plays a significant role in XLAS. Increased expression of COL4A1 and TIMP-1 at the end stage of disease supports the suggestion that expression increases in association with progression of fibrosis and confirms an observation of increased COL4A1 protein expression. Clusterin may function as one of the primary defenses of the renal cortex against progressive injury in dogs with XLAS, as demonstrated here by increased CLU gene expression. Cellular mechanisms that function during excess oxidative stress might also act to deter renal damage, as evidenced by alterations in gene expression of SOD1, ACO1, FDXR, and GPX1. This investigation provides a better understanding of interstitial fibrosis pathogenesis, and potential biomarkers for early detection, factors that are essential to discovering more effective treatments thereby reducing clinical illness and death due to CKD.
ABSTRACT:The influence of pro-inflammatory cytokines on alpha class glutathione S-transferase A1 and A2 (GSTA1/A2) expression was examined in human colonic epithelial cells (Caco-2) in culture. Dose-dependent reductions in GSTA1/A2 mRNA, protein, and activity levels occurred in Caco-2 cells cultured in conditioned medium (CM) from lipopolysaccharide-stimulated murine monocyte-macrophage cells (RAW 264.7). Neutralizing anti-interleukin-1 (IL-1) antibodies attenuated this repression of GSTA1/A2 expression by CM. Moreover, recombinant human IL-1 reduced GST␣ expression at the mRNA, protein, and activity levels in a dose-related fashion. Reduction of GSTA1/A2 mRNA levels by IL-1 was attenuated by pretreatment with IL-1 receptor antagonist. GSTA1/A2 mRNA half-lives were similar in control and IL-1-treated cells, indicating that IL-1 has no effect on mRNA stability. In reporter gene studies, IL-1 caused a dose-related reduction of luciferase activity in Caco-2 cells transfected with the full-length GSTA1 promoter-luciferase construct. Using truncated constructs, IL-1 responsiveness was mapped to a region 286 base pairs upstream to the coding region. Deletion of a hepatic nuclear factor 1 (HNF-1) site in this region abrogated the IL-1-mediated repression of GSTA1 promoter activity. These results demonstrate that IL-1 down-regulates GSTA1/A2 expression in cultured human enterocytes by a transcriptional mechanism involving an HNF-1 site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.