Engineered (bio)mineralization uses the enzyme urease to catalyze the hydrolysis of urea to promote carbonate mineral precipitation. The current study investigates the influence of temperature on ureolysis rate and degree of inactivation of plant‐sourced ureases over a range of environmentally relevant temperatures. Batch experiments at 30°C demonstrated that jack bean meal (JBM) has a 1.7 to 56 times higher activity (844 μmol urea hydrolyzed g−1 JBM min−1) than the other tested plant‐sourced ureases (soybean, pigeon pea and cottonseed). Hence, ureolysis and enzyme inactivation rates were evaluated for JBM at temperatures between 20°C and 80°C. A combined first‐order urea hydrolysis and first‐order enzyme inactivation model described the inactivation of urease over the investigated range of temperatures. The temperature‐dependent rate coefficients (kurea) increased with temperature and ranged from 0.0018 at 20°C to 0.0249 L g−1 JBM min−1 at 80°C; JBM urease became ≥50% inactivated in as little as 5.2 minutes at 80°C and in as long as 2238 minutes at 50°C. The combined urea hydrolysis kinetics and enzyme inactivation model provides a mathematical relationship useful for the design of biomineralization technologies and can be incorporated into reactive transport models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.