Cellulose was isolated from sugar beet chips, a by-product of sugar production, by wet chemistry. Further processing of the cellulose with a high-pressure homogeniser led to the disruption of cell walls into nanofibrils. Cellulose sheets obtained by casting and slow evaporation of water showed higher strength and stiffness when homogenised cellulose was used compared to unhomogenised cellulose. These cellulose sheets showed significantly better mechanical performance than Kraft paper tested for reference. The addition of cellulose nanofibrils to a polyvinyl alcohol and a phenol-formaldehyde matrix, respectively, demonstrated excellent reinforcement properties. The best mechanical performance was achieved for a composite with a phenol-formaldehyde resin content of 10%, which showed a tensile strength of 127 MPa, a modulus of elasticity of 9.5 GPa, and an elongation at break of 2.9%.
Cationic starch ethers prepared by the chemical reaction of starch with a quaternary ammonium reagent are commercially important derivatives. Cationic potato starch derivatives were produced under pilot‐scale conditions, employing four different principles. Wet cationisation was carried out by the slurry and paste processes, in which the cationic reagent and catalyst are added to the starch. Besides being prepared by these more commonly used processes, cationic starches were also produced by dry cationisation and by adding the cationic reagent during extrusion of starch. The cationic reagent used was 2,3‐epoxypropyltrimethylammonium chloride. Derivatives with three graded degrees of substitution (DS) between 0.03 and 0.12 were prepared by each process. The physical properties of the derivatives were analysed by the following methods: polarised light microscopy, X‐ray scattering, differential scanning calorimetry (DSC), solubility and swelling behaviour, and High‐Performance Size‐Exclusion Chromatography‐Multiangle Laser Light Scattering (HPSEC‐MALLS). The degree of substitution was determined by high resolution 13C‐NMR spectroscopy after hydrolysis with trifluoroacetic acid.The properties of the cationic starch derivatives were highly dependent on the derivatisation method. The granular structure of the starch was not visibly affected by the slurry process. Products from the semi‐dry reaction showed some granular damage, which was particularly evident after suspension of the granules in water. In the paste and extrusion processes, the starch granules were completely destroyed. Swelling temperatures and enthalpies can be determined only for starch derivatives that still retain a granular structure. As a result, samples from the paste and extrusion reactions exhibited no swelling endotherm in DSC. The samples from the slurry process showed a shift in the swelling temperature range towards lower temperature and a decrease in swelling enthalpy both as compared to native potato starch and also with increasing DS. Similar behaviour was found for the samples from the semi‐dry process. The swelling temperature region was comparable to that of the slurry samples for the same DS but the swelling enthalpy was distinctly lower, indicating that the granular structure of the starch was altered far more by the semi‐dry than the slurry process. Swelling in excess water and solubility were affected primarily by the cationisation process, while the influence of DS was of minor importance. The extrusion products had pronounced cold‐water solubility, the semi‐dry products showed increasing cold‐water solubility with increasing DS, the paste products were highly swollen in cold water and the slurry products were insoluble in cold water. All products were soluble in hot water but the state of dissolution was different.The molar mass distributions of the samples were determined after dissolution by pressure cooking. The different derivatisation methods resulted in characteristic molar mass distributions. The average molar mass decreased in the order slurry, semi‐dry‐, paste and extrusion process.
This article describes the effect of processing on the properties and morphology of thermoplastic starch (TPS) and poly(butylene adipate‐co‐terephthalate) (PBAT) blends and films with high starch content. Different process parameters were modified during compounding of blends and extrusion of blown films. Morphology was examined through scanning electron microscopy. Mechanical and optical characterization of films was carried out as well. Decreasing specific throughput during compounding led to an increase in strain at break of the blends from 66 to 497%. The tensile strength increased from 6 to 22 MPa as well. The highest elastic modulus and tear resistance were achieved at intermediate specific throughputs, whereas the maximum TPS particle size and the lowest color difference were obtained at high specific throughputs. A decrease of color difference from 6.4 to 2.2 was observed by reducing the temperature profile in 5 °C. In the case of blown film extrusion, increasing the temperature profile resulted in a reduction of color difference of the films from 7.9 to 4.2. In addition, tensile strength and strain at break slightly increased. Color difference decreased with decreasing screw speed as well. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47990.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.