Contrary to our rich phenomenological visual experience, our visual short-term memory system can maintain representations of only three to four objects at any given moment. For over a century, the capacity of visual memory has been shown to vary substantially across individuals, ranging from 1.5 to about 5 objects. Although numerous studies have recently begun to characterize the neural substrates of visual memory processes, a neurophysiological index of storage capacity limitations has not yet been established. Here, we provide electrophysiological evidence for lateralized activity in humans that reflects the encoding and maintenance of items in visual memory. The amplitude of this activity is strongly modulated by the number of objects being held in the memory at the time, but approaches a limit asymptotically for arrays that meet or exceed storage capacity. Indeed, the precise limit is determined by each individual's memory capacity, such that the activity from low-capacity individuals reaches this plateau much sooner than that from high-capacity individuals. Consequently, this measure provides a strong neurophysiological predictor of an individual's capacity, allowing the demonstration of a direct relationship between neural activity and memory capacity.
The capacity of visual short-term memory is highly limited, maintaining only three to four objects simultaneously. This extreme limitation necessitates efficient mechanisms to select only the most relevant objects from the immediate environment to be represented in memory and to restrict irrelevant items from consuming capacity. Here we report a neurophysiological measure of this memory selection mechanism in humans that gauges an individual's efficiency at excluding irrelevant items from being stored in memory. By examining the moment-by-moment contents of visual memory, we observe that selection efficiency varies substantially across individuals and is strongly predicted by the particular memory capacity of each person. Specifically, high capacity individuals are much more efficient at representing only the relevant items than are low capacity individuals, who inefficiently encode and maintain information about the irrelevant items present in the display. These results provide evidence that under many circumstances low capacity individuals may actually store more information in memory than high capacity individuals. Indeed, this ancillary allocation of memory capacity to irrelevant objects may be a primary source of putative differences in overall storage capacity.
Overlearning refers to the continued training of a skill after performance improvement has plateaued. Whether overlearning is beneficial is a question in our daily lives that has never been clearly answered. Here, we report a new important role: Overlearning abruptly changes neurochemical processing to hyper-stabilize and protect trained perceptual learning from subsequent new learning. Usually, learning immediately after training is so unstable that it can be disrupted by subsequent new learning, unless waiting for passive stabilization, which takes hours. However, overlearning so rapidly and strongly stabilizes the learning state that it not only becomes resilient against, but disrupts, subsequent new learning. Such hyper-stabilization is associated with an abrupt shift from glutamate-dominant excitatory to gamma-aminobutyric-acid-dominant inhibitory processing in early visual areas. Hyper-stabilization contrasts with passive and slower stabilization, which is associated with a mere reduction of an excitatory dominance to baseline levels. Utilizing hyper-stabilization may lead to efficient learning paradigms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.