Background Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. Results Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H′) of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H′ = 0.98), spike shape (H′ = 0.86), grain size (H′ = 0.94), grain shape (H′ = 0.87) and grain color (H′ = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. Conclusion Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.
Background: Tunisia is a center of genetic diversity of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and use for practical and beneficial purposes. In this context, a collection of 304 local accessions of durum wheat, collected from five regions and three climatic zones of central and southern Tunisia, was studied. Results: Morphological characterization was carried out using 12 spike-related traits and rendered a mean Shannon-Weaver Index (H') of 0.80 indicating the presence of a high level of polymorphism among accessions. Based on these traits 11 local landraces, namely Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H’=0.98) and shape (H’=0.86) with grains size (H’=0.94), form (H’=0.87) and color (H’=0.86) were the most polymorphic morphological traits. The genetic diversity was assessed using 10 SSR markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high, with a Shannon's Information Index (I) of 0.62 and a gene diversity (He) of 0.35. In addition, population structure analysis distinguished 11 genetic groups resulted from STRUCTURE and Mantel test showed a significant correlation between genetic and morphological distances. Analysis of molecular variance (AMOVA) showed high genetic variations within regions (81%) and wheat subpopulations (41%) showing a considerable amount of admixture between landraces realized by farmers; as well as a moderate (19%) and high (59%) genetic variations among regions and wheat subpopulations, indicating practices of selection pressure conducted by farmers. The Mahmoudi landrace showed spike densities significantly different between the center to the south of Tunisia; notably loose spikes with open glumes in the south and compact ones in the center, which may represent an adaptation form for tolerance to high temperature. Conclusion: Overall, this study highlights the genetic richness of local resources for better in situ or ex situ conservation and for their subsequent use in plant breeding programs.
Background: Tunisia is a center of genetic diversity of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and use for practical and beneficial purposes. In this context, a collection of 304 local accessions of durum wheat, collected from five regions and three climatic zones of central and southern Tunisia, was studied. Results: Morphological characterization was carried out using 12 spike-related traits and rendered a mean Shannon-Weaver Index (H') of 0.80 indicating the presence of a high level of polymorphism among accessions. Based on these traits 11 local landraces, namely Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H’=0.98) and shape (H’=0.86) with grains size (H’=0.94), form (H’=0.87) and color (H’=0.86) were the most polymorphic morphological traits. The genetic diversity was assessed using 10 SSR markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high, with a Shannon's Information Index (I) of 0.62 and a gene diversity (He) of 0.35. In addition, population structure analysis distinguished 11 genetic subpopulations significantly correlated with the morphological identification. Analysis of molecular variance (AMOVA) showed high genetic variations within regions (81%) and within wheat subpopulations (41%) reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) genetic variations among regions and among wheat subpopulations observed highlighted farmers selection practices . Furthermore, Mahmoudi landrace showed spike densities significantly different between the center to the south of Tunisia; notably loose spikes with open glumes in the south and compact ones in the center, which may represent an adaptation form for tolerance to high temperature. Conclusion: Overall, this study underlined the genetic richness of local resources for better in situ or ex situ conservation and for their subsequent use in plant breeding programs.
Background: Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. Results: Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H') of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H' = 0.98), spike shape (H' = 0.86), grain size (H' = 0.94), grain shape (H' = 0.87) and grain color (H' = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. Conclusion: Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.