Nowadays, Information and communications technology (ICT) becomes a very important thing in human life in different fields. They are used in many fields as information systems (software, middleware) using various telecommunication media to give users the ability to manipulate digital data. In addition, with new technology development, a new concept appeared in the late 90s and early millennium, which is distance learning through e-Learning platform. Recommendation systems become increasingly used in information systems and especially in e-learning platform. These systems are used to propose and recommend content of these platforms to users according to needs of the latter in order to allow them to have the maximum information for learning.
In this paper, we present an intelligent hybrid recommendation system based on data mining. This system has four parts, the first for data collection and for center of interest construction by two modes: explicit data collection, which based on users and what they filled in their profiles, and implicit and automatic data collection by proposing a survey to users in order to gather information about their interest. A second part for processing information already collected in the previous part and for creating the learning model, classifying users who posted the content and classifying content also in order to send the results to the recommendation module. The third part is for making the similarity between learners and content and doing the recommendation for learners and the final part is for creating a log file of recommendation by learner, which will be used in the upcoming recommendation. According to results already done, we noticed that our proposition is satisfactory and the system is well optimized in terms of accuracy, response and processing time compared to the standard recommendation.
Abstract-A wireless sensor network is a network that can design a selforganizing structure and provides effective support for several protocols such as routing, locating, discovering services, etc. It is composed of several nodes called sensors grouped together into a network to communicate with each other and with the base stations. Nowadays, the use of Wireless sensor networks increased considerably. It can collect physical data and transform it into a digital values in real-time to monitor in a continuous manner different disaster like flood. However, due to various factors that can affect the wireless sensor networks namely, environmental, manufacturing errors hardware and software problems etc... It is necessary to carefully select and filter the data from the wireless sensors since we are providing a decision support system for flood forecasting and warning. In this paper, we presents an intelligent Pre-Processing model of real-time flood forecasting and warning for data classification and aggregation. The proposed model consists on several stages to monitor the wireless sensors and its proper functioning, to provide the most appropriate data received from the wireless sensor networks in order to guarantee the best accuracy in terms of real-time data and to generate a historical data to be used in the further flood forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.