Software systems nowadays are complex and difficult to maintain due to continuous changes and bad design choices. To handle the complexity of systems, software products are, in general, decomposed in terms of packages/modules containing classes that are dependent. However, it is challenging to automatically remodularize systems to improve their maintainability. The majority of existing remodularization work mainly satisfy one objective which is improving the structure of packages by optimizing coupling and cohesion. In addition, most of existing studies are limited to only few operation types such as move class and split packages. Many other objectives, such as the design semantics, reducing the number of changes and maximizing the consistency with development change history, are important to improve the quality of the software by remodularizing it. In this article, we propose a novel many-objective search-based approach using NSGA-III. The process aims at finding the optimal remodularization solutions that improve the structure of packages, minimize the number of changes, preserve semantics coherence, and reuse the history of changes. We evaluate the efficiency of our approach using four different open-source systems and one automotive industry project, provided by our industrial partner, through a quantitative and qualitative study conducted with software engineers.
Declarative rules are frequently used in model refactoring in order to detect refactoring opportunities and to apply the appropriate ones. However, a large number of rules is required to obtain a complete specification of refactoring opportunities. Companies usually have accumulated examples of refactorings from past maintenance experiences. Based on these observations, we consider the model refactoring problem as a multi objective problem by suggesting refactoring sequences that aim to maximize both structural and textual similarity between a given model (the model to be refactored) and a set of poorly designed models in the base of examples (models that have undergone some refactorings) and minimize the structural similarity between a given model and a set of well-designed models in the base of examples (models that do not need any refactoring). To this end, we use the Non-dominated Sorting Genetic Algorithm (NSGA-II) to find a set of representative Pareto optimal solutions that present the best trade-off between structural and textual similarities of models. The validation results, based on 8 real world models taken from open-source projects, confirm the effectiveness of our approach, yielding refactoring recommendations with an average correctness of over 80%. In addition, our approach outperforms 5 of the state-of-the-art refactoring approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.