This paper proposes a model to identify the noise source in a virtualized infrastructure. This phenomenon appears when network functions running under virtual machines that are deployed on the same physical server compete for physical resources. First, an anomaly detection model is proposed to identify the machines that are in an abnormal state in the infrastructure by performing an unsupervised learning. An investigation of the root cause is later achieved by searching how anomalies are propagated in the system. To do this, a supervised learning of the anomaly propagation paths is proposed. A propagation graph is automatically created with a score assigned to its components. With a testbed created using Openstack, an experimentation study with real data is held giving promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.