This paper introduces a novel metaheuristic model-based scheme for fault monitoring in squirrel cage induction motors (SCIMs). This method relies on the combination of the ant lion optimizer (ALO) and the unscented Kalman filter (UKF) to detect and quantify the number of broken bars. Contrary to the UKF-based fault diagnosis, the improved ALO-UKF algorithm tunes optimally and automatically the noise covariance matrices Q and R, which reduces the estimation errors, and then obtains an effective and accurate fault diagnosis. Firstly, a mathematical model of the fault under study has been developed based on rotor parameter value as signature. Secondly, a sixth order ALO-UKF algorithm has been synthesized for simultaneous estimation of rotor resistance and speed. Several broken bar fault conditions have been simulated. Simulation results show the effectiveness and robustness of the proposed ALO-UKF scheme in broken bar detection and identification, and exhibit a more superior performance than the simple-UKF and EKF algorithms in term of stability, accuracy and response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.