A never-ending arms race drives coevolution between pathogens and hosts. In plants, pathogen attacks invoke multiple layers of host immune responses. Many pathogens deliver effector proteins into host cells to suppress host immunity, and many plants have evolved resistance proteins to recognize effectors and trigger robust resistance. Here, we discuss findings on noncoding small RNAs (sRNAs) from plants and pathogens, which regulate host immunity and pathogen virulence. Recent discoveries have unveiled the role of noncoding sRNAs from eukaryotic pathogens and bacteria in pathogenicity in both plant and animal hosts. The discovery of fungal sRNAs that are delivered into host cells to suppress plant immunity added sRNAs to the list of pathogen effectors. Similar to protein effector genes, many of these sRNAs are generated from transposable element (TE) regions, which are likely to contribute to rapidly evolving virulence and host adaptation. We also discuss RNA silencing that occurs between organisms.
Humans, animals, and plants are constantly under attack from pathogens and pests, resulting in severe consequences on global human health and crop production. Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism that is involved in almost all eukaryotic cellular processes, including host immunity and pathogen virulence. Recent evidence supports the significant contribution of sRNAs and RNAi to the communication between hosts and some eukaryotic pathogens, pests, parasites, or symbiotic microorganisms. Mobile silencing signals—most likely sRNAs—are capable of translocating from the host to its interacting organism, and vise versa. In this review, we will provide an overview of sRNA communications between different kingdoms, with a primary focus on the advances in plant-pathogen interaction systems.
Contents Summary 505 I. Introduction 505 II. Models of plant cell division 505 III. Establishing the division plane 506 IV. Maintaining the division plane during mitosis and cytokinesis 509 Acknowledgements 510 References 510 SUMMARY: Plants, a significant source of planet-wide biomass, have an unique type of cell division in which a new cell wall is constructed de novo inside the cell and guided towards the cell edge to complete division. The elegant control over positioning this new cell wall is essential for proper patterning and development. Plant cells, lacking migration, tightly coordinate division orientation and directed expansion to generate organized shapes. Several emerging lines of evidence suggest that the proteins required for division-plane establishment are distinct from those required for division-plane maintenance. We discuss recent shape-based computational models and mutant analyses that raise questions about, and identify unexpected connections between, the roles of well-known proteins and structures during division-plane orientation.
The phragmoplast is a plant-specific microtubule and microfilament structure that forms during telophase to direct new cell wall formation. The phragmoplast expands towards a specific location at the cell cortex called the division site. How the phragmoplast accurately reaches the division site is currently unknown. We show that a previously uncharacterized microtubule arrays accumulated at the cell cortex. These microtubules were organized by transient interactions with division-site localized proteins and were then incorporated into the phragmoplast to guide it towards the division site. A phragmoplast-guidance defective mutant, tangled1, had aberrant cortical-telophase microtubule accumulation that correlated with phragmoplast positioning defects. Division-site localized proteins may promote proper division plane positioning by organizing the cortical-telophase microtubule array to guide the phragmoplast to the division site during plant cell division.One Sentence SummaryMicrotubules accumulate at the cell cortex and interact with the plant division machinery to direct its movement towards the division site.
Maize is an important model organism for understanding cell patterning and development.The regular patterning of maize leaf epidermal cells has previously been characterized using the dye toluidine blue O (TBO). The polychromatic dye TBO differentially stains plant cells depending on the chemical composition of cell components and has been used to identify differences in development, cell shape and wall composition in maize. This protocol provides step-by-step instructions to fix maize leaf tissue, to peel the maize epidermis, to stain epidermal peels with TBO and finally to image using a standard light microscope. The benefit of using epidermal peels is to generate high-quality micrographs of epidermal cells for quantitative analysis. TBO staining highlights cell walls, nuclei, and differential staining of different cell types that are simple to compare, and measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.