Inactive lithium (Li) formation is the immediate cause of capacity loss and catastrophic failure of Li metal batteries. However, the chemical component and the atomic level structure of inactive Li have rarely been studied due to the lack of effective diagnosis tools to accurately differentiate and quantify Li + in solid electrolyte interphase (SEI) components and the electrically isolated unreacted metallic Li 0 , which together comprise the inactive Li. Here, by introducing a new analytical method, Titration Gas Chromatography (TGC), we can accurately quantify the contribution from metallic Li 0 to the total amount of inactive Li. We uncover that the Li 0 , rather than the electrochemically formed SEI, dominates the inactive Li and capacity loss. Using cryogenic electron microscopies to further study the microstructure and nanostructure of inactive Li, we find that the Li 0 is surrounded by insulating SEI, losing the electronic conductive pathway to the bulk electrode. Coupling the measurements of the Li 0 global content to observations of its local atomic structure, we reveal the formation mechanism of inactive Li in different types of electrolytes, and identify the true underlying cause of low Coulombic efficiency in Li metal deposition and stripping. We ultimately propose strategies to enable the highly efficient Li deposition and stripping to enable Li metal anode for next generation high energy batteries. Main Text:To achieve the energy density of 500 Wh/kg or higher for next-generation battery technologies, Li metal is the ultimate anode, because it is the lightest metal on earth (0.534 g cm -3 ), delivers ultra-high theoretical capacity (3860 mAh g -1 ), and has the lowest negative electrochemical potential (-3.04 V vs. SHE) 1 . Yet, Li metal suffers from dendrite growth and low Coulombic efficiency (CE) which have prevented the extensive adoption of Li metal batteries (LMBs) 2-4 . Since the first demonstration of a Li metal battery in 1976 5 , tremendous effort has been made in preventing dendritic Li growth and improving CE, including electrolyte engineering 6-9 , interface protection 10 and substrate architecture 11 . While dense Li can be achieved without any dendrites during the plating process, the stripping process will eventually dominate the CE thus the reversibility of Li metal anode.The formation of inactive Li, also known as "dead" Li, is the immediate cause of low CE, short cycle life and violent safety hazard of LMBs. It consists of both (electro)chemically formed Li + compounds
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.
Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.
High-voltage batteries with Li-metal anodes can offer desirable high energy densities. Despite their excellent oxidative stability, sulfones have various limitations to be useful in Li-metal batteries, in particular their instability with Li metal. Here, we achieved a high Li Coulombic efficiency of nearly 99% in a sulfonebased localized high-concentration electrolyte (LHCE) with the addition of a nonsolvating co-solvent. In addition, this co-solvent is highly beneficial for realizing stable battery cycling up to 4.9 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.