Cu 2 ZnSnS 4 (CZTS)-based solar cells show a promising performance in the field of sunlight-based energy production system. To increase the performance of CZTS-based solar cell, buffer layer optimization is still an obstacle. In this work, numerical simulations were performed on structures based on CZTS absorber layer, ZnO window layer, and transparent conducting layer n-ITO with different buffer layers using SCAPS-1D software to find a suitable buffer layer. Cadmium sulfide (CdS), zinc sulfide (ZnS) and their alloy cadmium zinc sulfide (Cd 0.4 Zn 0.6 S) were used as potential buffer layers to investigate the effect of buffer thickness, absorber thickness and temperature on open-circuit voltage (V oc), short-circuit current (J sc), fill factor (FF) and efficiency (η) of the solar cell. The optimum efficiencies using these three buffer layers are around 11.20%. Among these three buffers, Cd 0.4 Zn 0.6 S is more preferable as CdS suffers from toxicity problem and ZnS shows drastic change in performance parameters. The simulation results can give important guideline for the fabrication of high-efficiency CZTS solar cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.