Microalgae are important microorganisms which produce potentially valuable compounds. Astaxanthin, a group of xanthophyll carotenoids, is one of the most powerful antioxidants mainly found in microalgae, yeasts, and crustaceans. Environmental stresses such as intense light, drought, high salinity, nutrient depletion, and high temperature can induce the accumulation of astaxanthin. Thus, this research aims to investigate the effect of black light, also known as long-wave ultraviolet radiation or UV-A, as a stressor on the accumulation of astaxanthin as well as to screen the antioxidant property in two tropical green algal strains isolated from Malaysia, Coelastrum sp. and Monoraphidium sp. SP03. Monoraphidium sp. SP03 showed a higher growth rate (0.66 day−1) compared to that of Coelastrum sp. (0.22 day−1). Coelastrum sp. showed significantly higher accumulation of astaxanthin in black light (0.999 g mL culture−1) compared to that in control condition (0.185 g mL−1). Similarly, Monoraphidium sp. SP03 showed higher astaxanthin content in black light (0.476 g mL culture−1) compared to that in control condition (0.363 g mL culture−1). Coelastrum sp. showed higher scavenging activity (30.19%) when cultured in black light condition, indicating a correlation between the antioxidant activity and accumulation of astaxanthin. In this study, black light was shown to possess great potential to enhance the production of astaxanthin in microalgae.
Microalgae are promising producers of biofuel due to higher accumulation of triacylglycerol (TAG). However, further improvement of the lipid metabolism is critical for feasible application of microalgae in industrial production of biofuel. Suppression of lipid degradation pathways is a promising way to remarkably increase the lipid production in model diatoms. In this study, we established an antisense-based knockdown (KD) technique in the marine oleaginous diatom, Fistulifera solaris. This species has a capability to accumulate high content of lipids. Tgl1 KD showed positive impact on cell growth and lipid accumulation in conventional culture in f/2 medium, resulting in higher oil contents compared to wild type strain. However, these impacts of Tgl1 KD were slight when the cells were subjected to the two-stage growth system. The Tgl1 KD resulted in slight change of fatty acid composition; increasing in C14:0, C16:0 and C16:1, and decreasing in C20:5. This study indicates that, although Tgl1 played a certain role in lipid degradation in F. solaris, suppression of only a single type of TAG lipase was not significantly effective to improve the lipid production. Comprehensive understanding of the lipid catabolism in this microalga is essential to further improve the lipid production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.