Active multiple sclerosis lesions show inflammatory changes suggestive of a combined attack by autoreactive T and B lymphocytes against brain white matter. These pathogenic immune cells derive from progenitors that are normal, innocuous components of the healthy immune repertoire but become autoaggressive upon pathological activation. The stimuli triggering this autoimmune conversion have been commonly attributed to environmental factors, in particular microbial infection. However, using the relapsing-remitting mouse model of spontaneously developing experimental autoimmune encephalomyelitis, here we show that the commensal gut flora-in the absence of pathogenic agents-is essential in triggering immune processes, leading to a relapsing-remitting autoimmune disease driven by myelin-specific CD4(+) T cells. We show further that recruitment and activation of autoantibody-producing B cells from the endogenous immune repertoire depends on availability of the target autoantigen, myelin oligodendrocyte glycoprotein (MOG), and commensal microbiota. Our observations identify a sequence of events triggering organ-specific autoimmune disease and these processes may offer novel therapeutic targets.
Imaging with GECIs has become a widely used method in physiology and neuroscience [1][2][3] . According to readout mode, the design of the sensors has followed two different pathways, leading to single-wavelength sensors and FRET-based ratiometric sensors [4][5][6][7][8] . Among the most popular single-wavelength sensors are the G-CaMPs 9-13 , R-CaMPs 14 and GECOs 15 . FRET sensors include yellow cameleon 3.60 (refs. 16,17), D3cpv 18 , yellow cameleon Nano 19 and TN-XXL 20 .Quantification by ratiometric FRET imaging is more accurate than single-channel measurements and may be more suitable for long-term functional imaging studies, as it is less influenced by changes in optical path length, excitation light intensity and indicator expression level and by tissue movement and growth during development. In addition, FRET indicators are substantially brighter than single-wavelength sensors at rest, allowing better identification of expressing cells and their subcellular structures. Another practical feature of FRET-based indicators is their ability to measure basal Ca 2+ levels within cells, for example, to distinguish between resting and continuously spiking neuronssomething that cannot easily be achieved with single-wavelength indicators 21 . Increased basal Ca 2+ levels within the brain are also observed at the onset of neurodegenerative processes, and ratiometric FRET calcium imaging has been used in these conditions to monitor disease progression 22,23 . Moreover, ratiometric indicators are advantageous for monitoring calcium in motile cells.Both calmodulin and troponin C (TnC), the calcium binding proteins within the various GECIs, consist of two globular domains connected by a central linker 24,25 . Each domain possesses two calcium-binding EF hand motifs. Thus, currently available GECIs are highly nonlinear sensors binding up to four calcium ions per sensor. Identification of a smaller calciumbinding domain with fewer binding sites could help to reduce buffering during long-term chronic GECI expression 26 , make the sensor smaller and further minimize the risk of cytotoxicity. It may also help to simplify response properties and facilitate the biophysical modeling of sensor behavior.Here we report several improvements of FRET-based calcium sensors for in vivo imaging. First, we identified a minimal calcium binding motif based on the C-terminal domain of TnC with only two or one remaining calcium binding sites per sensor molecule, thus reducing the overall calcium buffering of the sensors. Second, by sampling TnCs from various species we identified a new TnC variant from the toadfish Opsanus tau, which offered the possibility of generating minimal domains with high-affinity calcium binding. Third, we used a large-scale, two-step functional screen to optimize the FRET changes in the sensor by linker diversification. This approach allowed us to identify Twitch sensors with a superior FRET change and may become useful for optimizing other types of FRET sensors. Finally, we improved brightness and photostability o...
BackgroundThere is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of “monoclonal” T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature.Methods and FindingsCD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag2−/−) recipients, predominantly induced “classic” paralytic EAE, whereas Th17 cells mediated “atypical” ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype.ConclusionsOur data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce classical EAE.
To study T cell activation in vivo in real time, we introduced a newly developed fluorescence resonance energy transfer-based, genetically encoded calcium indicator into autoantigen-specific and non-autoantigen-specific CD4(+) T cells. Using two-photon microscopy, we explored the responses of retrovirally transduced calcium indicator-expressing T cells to antigen in the lymph nodes and the central nervous system. In lymph nodes, the administration of exogenous antigen caused an almost immediate arrest of T cells around antigen-presenting cells and an instant rise of cytosolic calcium. In contrast, encephalitogenic T cells entering the leptomeningeal space, one main portal into the central nervous system parenchyma during experimental autoimmune encephalomyelitis, showed elevated intracellular calcium concentrations while still meandering through the space. This approach enabled us to follow the migration and activation patterns of T cells in vivo during the course of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.