The interaction of doxorubicin (DX) with model polynucleotides poly(dG-dC)·poly(dG-dC) (polyGC), poly(dA-dT)·poly(dA-dT) (polyAT), and calf thymus DNA has been studied by several spectroscopic techniques in phosphate buffer aqueous solutions. UV-vis, circular dichroism, and fluorescence spectroscopic data confirm that intercalation is the prevailing mode of interaction, and also reveal that the interaction with AT-rich regions leads to the transfer of excitation energy to DX not previously documented in the literature. Moreover, the DX affinity for AT sites has been found to be on the same order of magnitude as that reported for GC sites.
The behaviour of the synthetic polynucleotide polyAT entrapped in the inner core of a quaternary cationic microemulsion has been investigated by means of CD and UV spectroscopies in the presence of KCl (variable temperature at constant) and NaCl (variable P 0 at constant W 0 and temperature). While the presence of KCl gives rise to effects which are not substantially different from those already reported for NaCl (absence of thermal melting and formation of compact c(À) structures), the peculiar results obtained as a consequence of the progressive addition of cosurfactant (denaturation of the polymer at low [NaCl] and W 0 ; transition from B-to A-form at intermediate [NaCl],formation of c(À) aggregates at high [NaCl]) can be attributed to the characteristics of the microemulsive system (restricted volume), of the micellar water (low dielectric constant and reduced activity) and of the interface (progressively higher cosurfactant concentration).
The thermal behavior of the synthetic, high molecular weight, double stranded polynucleotides poly(dA-dT).poly(dA-dT) [polyAT] and poly(dG-dC).poly(dG-dC) [polyGC] solubilized in the aqueous core of the quaternary water-in-oil cationic microemulsion CTAB|n-pentanol|n-hexane|water in the presence of increasing amounts of NiCl(2) at several constant ionic strength values (NaCl) has been studied by means of circular dichroism and electronic absorption spectroscopies. In the microemulsive medium, both polynucleotides show temperature-induced modifications that markedly vary with both Ni(II) concentration and ionic strength. An increase of temperature causes denaturation of the polyAT duplex at low nickel concentrations, while more complex CD spectral modifications are observed at higher nickel concentrations and ionic strengths. By contrast, thermal denaturation is never observed for polyGC. At low Ni(II) concentrations, the increase of temperature induces conformational transitions from B-DNA to Z-DNA form, or, more precisely, to left-handed helical structures. In some cases, at higher nickel concentrations, the CD spectra suggest the presence of Z'-type forms of the polynucleotide.
CD and uv absorption data showed that high molecular weight poly(dA-dT) . poly(dA-dT), at 298 K, undergoes an acid-induced transition from B-double helix to random coil in NaCl solutions of different concentrations, ranging from 0.005 to 0.600M. Similarly, titration of the polynucleotide with a strong base causes duplex-to-single strands transition. The base- and acid-induced transitions were both reversible by back-titration (with an acid or, respectively, with a base): the apparent pKa were the same in both directions. However, the number of protons per titratable site (adenine N1) required to reach half-denaturation was in great excess over the stoichiometric value; to a much larger extent, the same effect was observed also for the deprotonation of the N3H sites of thymine. Moreover, in the basic denaturation experiments, at low salt concentrations ([NaCl]< or =0.300M) less acid than calculated was needed to back-titrate the base excess to half-denaturation. Both effects could be qualitatively justified on the basis of the counterion condensation theory of polyelectrolytes and considering the energy barrier created by the negatively charged phosphodiester groups to the penetration of the OH- ions inside the double helix and the screening effect of the Na+ ions on such charges, in the deprotonation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.