SummaryBackground and objectives Achieving and maintaining optimal fluid status remains a major challenge in hemodialysis therapy. The aim of this interventional study was to assess the feasibility and clinical consequences of active fluid management guided by bioimpedance spectroscopy in chronic hemodialysis patients.Design, setting, participants, & measurements Fluid status was optimized prospectively in 55 chronic hemodialysis patients over 3 months (November 2011 to February 2012. Predialysis fluid overload was measured weekly using the Fresenius Body Composition Monitor. Time-averaged fluid overload was calculated as the average between pre-and postdialysis fluid overload. The study aimed to bring the time-averaged fluid overload of all patients into a target range of 0.560.75 L within the first month and maintain optimal fluid status until study end. Postweight was adjusted weekly according to a predefined protocol.Results Time-averaged fluid overload in the complete study cohort was 0.961.6 L at baseline and 0.661.1 L at study end. Time-averaged fluid overload decreased by 21.2061.32 L (P,0.01) in the fluid-overloaded group (n=17), remained unchanged in the normovolemic group (n=26, P=0.59), and increased by 0.5960.76 L (P=0.02) in the dehydrated group (n=12). Every 1 L change in fluid overload was accompanied by a 9.9 mmHg/L change in predialysis systolic BP (r=0.55, P,0.001). At study end, 76% of all patients were either on time-averaged fluid overload target or at least closer to target than at study start. The number of intradialytic symptoms did not change significantly in any of the subgroups.Conclusions Active fluid management guided by bioimpedance spectroscopy was associated with an improvement in overall fluid status and BP.
Background: A novel class of membranes, medium cut-off (MCO) membranes, has recently been designed to achieve interesting removal capacities for middle and large middle molecules in hemodialysis (HD) treatments. The few studies published to date have reported contradictory results regarding middle-sized molecules when comparing MCO dialyzers versus dialyzers used in online hemodiafiltration (OL-HDF). Methods: A prospective, single-center study was carried out in 22 patients. Each patient underwent 9 dialysis sessions with routine dialysis parameters, one with an MCO dialyzer in HD and the other 8 with different dialyzers in OL-HDF. The removal ratio (RR) of urea, creatinine, β2-microglobulin, myoglobin, prolactin, α1-microglobulin, α1-acid glycoprotein, and albumin was intraindividually compared. Albumin loss in dialysate was measured. We propose a global removal score ([ureaRR + β2-microglobulinRR + myoglobinRR + prolactinRR + α1-microglobulinRR + α1-acid glycoproteinRR]/6 – albuminRR) as a new tool for measuring dialyzer effectiveness. Results: No significant differences in the RRs of small and middle molecular range molecules were observed between the MCO vs. OL-HDF dialyzers (range 60–80%). Lower RRs were found for α1-microglobulin and α1-acid glycoprotein without significant differences. The albumin RR was < 11% and dialysate albumin loss was < 3.5 g in all situations without significant differences. The global removal score was 54.9 ± 4.8% with the MCO dialyzer without significant differences. Conclusions: Removal of a wide range of molecular weights, calculated with the proposed global removal score, was almost equal with the MCO dialyzer in HD treatment compared with 8 high-flux dialyzers in high-volume OL-HDF without relevant changes in albumin loss. The global removal score could be a new tool to evaluate the effectiveness of dialyzers and/or different treatment modalities.
Sharps injuries remain a frequent threat amongst HCWs. The follow-up and treatment of sharps injuries and the deriving consequences represent a significant cost factor.
Most high-flux dialyzers can be used in both hemodialysis (HD) and online hemodiafiltration (OL-HDF). However, some of these dialyzers have higher permeability and should not be prescribed for OL-HDF to avoid high albumin losses. The aim of this study was to compare the safety and efficacy of a currently used dialyzer in HD and OL-HDF with those of several other high permeability dialyzers which should only be used in HD. A prospective, single-center study was carried out in 21 patients. Each patient underwent 5 dialysis sessions with routine dialysis parameters: 2 sessions with Helixone (HD and postdilution OL-HDF) and 1 session each with steam sterilized polyphenylene, polymethylmethacrylate (PMMA), and medium cutoff (MCO) dialyzers in HD treatment. The removal ratios (RR) of urea, creatinine, ß 2 -microglobulin, myoglobin, prolactin, α 1 -microglobulin, α 1 -acid glycoprotein, and albumin were compared intraindividually. A proportional part of the dialysate was collected to quantify the loss of various solutes, including albumin. Urea and creatinine RRs with the Helixone-HDF and MCO dialyzers were higher than with the other 3 dialyzers in HD. The β 2 -microglobulin, myoglobin and prolactin RRs with Helixone-HDF treatment were significantly higher than those obtained with all 4 dialyzers in HD treatment. The β 2 -microglobulin value obtained with the MCO dialyzer was also higher than that obtained with the other 3 dialyzers in HD treatment. The myoglobin RR with MCO was higher than those obtained with Helixone and PMMA in HD treatment. The prolactin RR with Helixone-HD was significantly lower than those obtained in the other 4 study sessions. The α 1 -microglobulin and α 1 -acid glycoprotein RRs with Helixone-HDF were significantly higher than those obtained with Helixone and PMMA in HD treatment. The albumin loss varied from 0.54 g with Helixone-HD to 3.3 g with polyphenylene. The global removal score values ((Urea RR + β 2 -microglobulin RR + myoglobin RR + prolactin RR + α 1 -microglobulin RR + α 1 -acid glycoprotein RR -albumin RR )/6) were 43.7% with Helixone-HD, 47.7% with PMMA, 54% with polyphenylene, 54.8% with MCO and 59.6% with Helixone-HDF, with How to cite this article: Maduell F, Rodas L, Broseta JJ, et al. High-permeability alternatives to current dialyzers performing both high-flux hemodialysis and postdilution online hemodiafiltration.
Background: Unlike conventional hemodialysis treatments, which rely almost solely on diffusion-related mechanisms for solute removal, hemodiafiltration (HDF) allows more efficient removal of higher molecular weight toxins due to convective transport mechanisms. To facilitate the removal of these toxins in HDF treatment modalities, dialyzers with highly efficient high-flux membranes are necessary. This study assessed the large uremic toxin removal ability of a high-flux dialyzer (FX CorDiax 60) specifically designed to facilitate convective therapies compared with a standard high-flux dialyzer (FX 60). Methods: In an open, randomized, cross-over, single-center, controlled, prospective clinical study, 30 adult chronic hemodialysis patients were treated by post-dilution online HDF with the FX 60 or the FX CorDiax 60 dialyzer. All other dialysis parameters were kept constant in both study arms. The reduction rate (RR) of blood urea nitrogen, phosphate, β2-microglobulin (β2-m), myoglobin, prolactin, α1-microglobulin, α1-acid glycoprotein, albumin and total protein as well as the elimination into dialysate was intraindividually compared for the two dialyzer types. Results: For FX CorDiax 60 versus FX 60, the RR was significantly higher for blood urea nitrogen (86.23 ± 4.14 vs. 84.89 ± 4.59%, p = 0.015), β2-m (84.67 ± 3.79 vs. 81.30 ± 4.82%, p < 0.0001), myoglobin (75.23 ± 10.48 vs. 58.60 ± 12.1%, p < 0.0001), prolactin (72.96 ± 9.68 vs. 56.91 ± 13.01%, p < 0.0001) and α1-microglobulin (20.89 ± 18.27 vs. 13.60 ± 12.50%, p = 0.016). There were no significant differences in the RR for phosphate, α1-acid glycoprotein, albumin and total protein. Mass removal was significantly higher with the FX CorDiax 60 than with the FX 60 for β2-m (0.26 ± 0.09 vs. 0.24 ± 0.09 g, p = 0.0006), myoglobin (1.83 ± 0.89 vs. 1.51 ± 0.76 mg, p = 0.0017), prolactin (0.17 ± 0.13 vs. 0.14 ± 0.08 mg, p = 0.02) and albumin (4.25 ± 3.49 vs. 3.01 ± 2.37 g, p = 0.03). Conclusions: This study demonstrates that treating patients with an FX CorDiax 60 instead of an FX 60 dialyzer in post-dilution HDF mode significantly increases the elimination of middle molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.