Background
While there seems to be a consensus that a decrease in gut microbiome diversity is related to a decline in health status, the associations between respiratory microbiome diversity and chronic lung disease remain a matter of debate. We provide a systematic review and meta-analysis of studies examining lung microbiota alpha-diversity in patients with asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or bronchiectasis (NCFB), in which a control group based on disease status or healthy subjects is provided for comparison.
Results
We reviewed 351 articles on title and abstract, of which 27 met our inclusion criteria for systematic review. Data from 24 of these studies were used in the meta-analysis. We observed a trend that CF patients have a less diverse respiratory microbiota than healthy individuals. However, substantial heterogeneity was present and detailed using random-effects models, which limits the comparison between studies.
Conclusions
Knowledge on respiratory microbiota is under construction, and for the moment, it seems that alpha-diversity measurements are not enough documented to fully understand the link between microbiota and health, excepted in CF context which represents the most studied chronic respiratory disease with consistent published data to link alpha-diversity and lung function. Whether differences in respiratory microbiota profiles have an impact on chronic respiratory disease symptoms and/or evolution deserves further exploration.
Several predictive models have been proposed to understand the microbial risk factors associated with cystic fibrosis (CF) progression. Very few have integrated fungal airways colonisation, which is increasingly recognized as a key player regarding CF progression. To assess the association between the percent predicted forced expiratory volume in 1 s (ppFEV1) change and the fungi or bacteria identified in the sputum, 299 CF patients from the “MucoFong” project were included and followed-up with over two years. The relationship between the microorganisms identified in the sputum and ppFEV1 course of patients was longitudinally analysed. An adjusted linear mixed model analysis was performed to evaluate the effect of a transient or chronic bacterial and/or fungal colonisation at inclusion on the ppFEV1 change over a two-year period. Pseudomonas aeruginosa, Achromobacter xylosoxidans, Stenotrophomonas maltophilia, and Candida albicans were associated with a significant ppFEV1 decrease. No significant association was found with other fungal colonisations. In addition, the ppFEV1 outcome in our model was 11.26% lower in patients presenting with a transient colonisation with non-pneumoniae Streptococcus species compared to other patients. These results confirm recently published data and provide new insights into bacterial and fungal colonisation as key factors for the assessment of lung function decline in CF patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.