The nuclear matrix-intermediate filament complex (NM-IF) is a protein scaffold which spans the whole cell, and several lines of evidence suggest that this structural frame represents also a functional unit, which could be involved in the epigenetic control of cancer development. Here we report the characterization by high resolution two-dimensional gel electrophoresis and Western blot analysis of the NM-IF complex isolated from prostate cancer (PCa); tumor-associated proteins were identified by comparing the electrophoretic patterns with those of normal human prostate (NHP). Extensive changes in the expression of both the NM and IF proteins occur; they are, however, related in a different way to tumor progression. Poorly differentiated PCa (Gleason score 8 -9) shows a strong down regulation of several constitutive cytokeratins (CKs 8, 18, and 19); their expression significantly (P Ͻ 0.05) decreases with respect to both NHP and benign prostatic hyperplasia (BPH) and, more interestingly, also with respect to moderately (Gleason score 6 -7) and well (Gleason score 4 -5) differentiated tumors. Moreover, we have identified a tumor-associated species which is present in all of the tumors examined, systematically absent in NHP and occurs only in a few samples of BPH; this polypeptide, of M r 48,000 and pI 6.0, represent a proteolytic fragment of CK8. At variance with these continuing alterations in the expression, the NM proteins undergo stepwise changes correlating with the level of differentiation. The development of less differentiated tumors is characterized by the appearance of several new proteins and by the decrease in the expression of others. Six proteins were found to be expressed with a frequency equal to one in poorly differentiated tumor, namely in all the samples of tumor examined, while in moderately and well differentiated tumors the frequency is less than one, and decreases with increasing the level of differentiation. When tumors of increasing Gleason score are compared with NHP a dramatic increase in the complexity of the protein patterns is observed, indicating that tumor dedifferentiation results in a considerable increase in the phenotypic diversity. These results suggest that tumor progression can be characterized using an appropriate subset of tumorassociated NM proteins.
Using differential scanning calorimetry in combination with pulsed field gel electrophoresis, we relate here the changes in the thermal profile of rat liver nuclei induced by very mild digestion of chromatin by endogenous nuclease with the chain length distribution of the DNA fragments. The enthalpy of the endotherm at 106 degrees C, which reflects the denaturation of the heterochromatic domains, decreases dramatically after the induction of a very small number of double-strand breaks per chromosome; the thermal transition disappears when the loops have undergone on average one DNA chain scission event. Quantitative analysis of the experimental data shows that the loop behaves like a topologically isolated domain. Also discussed is the process of heterochromatin formation, which occurs according to an all-or-none mechanism. In the presence of spermine, a strong condensation agent, only the loops that have undergone one break are able to refold, in confirmation of the extremely cooperative nature of the transition. Furthermore, our results suggest a relationship between the states that give rise to the endotherms at 90 degrees C and 106 degrees C and the morphologies referred to as class II and class III in a previous physicochemical study of the folding of chromatin fragments (Widom, 1986. J. Mol. Biol. 190:411-424) and support the view that the overall process of condensation follows a sequential (two-step) pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.