Morphine withdrawal increases the hypothalamic-pituitary-adrenocortical (HPA) axis activity, which is dependent on an hyperactivity of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN). However, the possible adaptive changes that can occur in these pathways during morphine dependence are not known. We studied the alterations in tyrosine hydroxylase (TH; the rate-limiting enzyme in catecholamines biosynthesis) immunoreactivity levels and TH enzyme activity in the rat NTS-A2/VLM-A1 noradrenergic cell groups and in the PVN during morphine withdrawal. In the same paradigm, we measured Fos expression as a marker of neuronal activation. TH and Fos immunoreactivity was determined by quantitative Western blot analysis, combined with immunostaining for TH and Fos for immunohistochemical identification of active neurons during morphine withdrawal. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). Morphine withdrawal induced the expression of Fos in the PVN and NTS/VLM, which indicates an activation of neurons in these nuclei. TH immunoreactivity in the NTS/VLM was increased 90 min after morphine withdrawal, whereas there was a decrease in TH levels in the PVN at the same time point. Following withdrawal, Fos immunoreactivity was present in most of the TH-positive neurons of the A2 and A1 neurons. TH activity was measured in the PVN, a projection area of noradrenergic neurons arising from NTS-A2/VLM-A1. Morphine withdrawal was associated with an increase in the enzyme activity at different time points after naloxone-precipitated morphine withdrawal. The present results suggest that an increase in TH protein levels and TH enzyme activity might contribute to the enhanced noradrenergic activity in the PVN in response to morphine withdrawal.
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCa and PKCc immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCa and c were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats.Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.
Morphine withdrawal stimulates the hypothalamic-pituitaryadrenocortical axis activity by activation of nucleus tractus solitarius (NTS)/ventrolateral medulla (VLM) noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN). We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibition of PKA on Fos protein expression and tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and NTS/VLM during morphine withdrawal. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity levels was observed 90 min after naloxone administration in the PVN and NTS/VLM areas. Morphine withdrawal induced expression of Fos in the PVN and NTS/VLM, indicating an activation of neurones in those nuclei. TH immunoreactivity in NTS/VLM was increased 90 min after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN at the same time point. When the selective PKA inhibitor HA-1004 was infused it greatly diminished the Fos expression observed in morphine-withdrawn rats. Furthermore, the changes in TH immunoreactivity were significantly modified by infusion of HA-1004. The present findings suggest that an upregulated PKA-dependent transduction pathway might contribute to the activation of the hypothalamic-pituitaryadrenocortical axis in response to morphine withdrawal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.