In the present study, were determined the basic nutrients (dry matter, crude ash, crude protein, ether extract, and energy) and mineral elements content in chosen species of raw and smoked freshwater and sea fish. The content of dry matter, and basic nutrients and Na+, K+, Ca+2, Mg+2, P+2, Zn+2, and Cu+2 in the fish samples was determined. The dietary intake of several macro- and microconstituents per one serving (150 g fresh or smoked fish) was calculated. The fresh fish contained on average 220.2 to 283.7 g·kg-1 of dry matter, 12.4 to 10.7 g·kg-1 of crude ash, 176.2 to 173.5 g·kg-1 of crude protein, 32.6 to 78.6 g·kg-1 of ether extract, and 104.6 to 119.1 kcal (freshwater and sea fish, respectively). Thermal treatment reduces the water and fat content in fish meat. Reduction of the K, Ca, Mg, P, Zn, and Cu levels was observed most frequently. The one serving of fish covers approximately 23% and 12% of the recommended dietary amount of K, 7.5–5.0% of Ca, ~12% of Mg, 6.8 to 12.5% of Zn, and about covered 6.7% of Cu. The smoking process increased the concentration of some basic nutrients and reduced the fat and mineral content. Whitefish, trout, halibut, mackerel, and herring had the highest levels of the analyzed minerals.
Environmental management of cellulose production waste and municipal sewage sludge appears to be substantiated due to various physicochemical properties of these wastes. The aim of the conducted research was to determine the effect of cellulose production waste and sewage sludge on yielding and heavy metal uptake by a plant mixture. The research was conducted under field experiment conditions, determining the fertilizer value of these wastes in the environmental aspect. The research was carried out in the years 2013-2016. Species composition of the plant mixture was adjusted to habitat conditions. It was established that, as compared with the cellulose production waste, the municipal sewage sludge used in the experiment had a higher content of macroelements. The content of heavy metals in the studied waste did not exceed the limits that condition their use in agriculture and reclamation. Applying only the cellulose production waste did not significantly decrease the yield of the plants. Municipal sewage sludge showed the highest yield-forming effect. Mixing the above-mentioned wastes and their application to soil had a significant effect on the increase in the plant mixture yield. The waste applied to soil also increased the content of Cr, Cd, Pb, Cu, and Zn in the plant mix. The level of heavy metal content in the plant mix did not exclude this biomass from being used for fodder or reclamation purposes. The cellulose production waste and municipal sewage sludge increased the heavy metal uptake by the plant mixture. The plant biomass extracted heavy metals from the sewage sludge more intensively than from the cellulose production waste. Among the analyzed heavy metals, the highest phytoremediation was recorded for Ni (30%), followed by Cd (20%), Cr (15%), Pb (10%), and the lowest for Cu (9%) and Zn (8%). Application of the cellulose production waste and sewage sludge to soil also increased the content of the studied heavy metals in soil. However, it did not cause deterioration of soil quality standards. Heterogeneity in the chemical composition of the wastes confirms that each batch intended to be used for environmental management should be subjected to chemical control.
Abstract:The study was conducted in the area of the impact of sulfur mine in Jeziórko. The aim of the study was to assess changes in pH, cation exchange capacity and content of available phosphorus, potassium and magnesium after 6 years of conducting remediation. In the experiment (plots with an area of 15 m 2 ) degraded soil was rehabilitating by post-fl oating lime and compost from sewage sludge, sewage sludge and ash from combined heat and power (CHP). Composts at a dose of dry matter 180 t · ha -1 (6%), were determined in accordance with Minister of the Environment Regulation from 2001, applied the following options: control (only native soil limed), compost from municipal sewage sludge, sewage sludge compost (80%) and ash (20%), compost from sewage sludge (70%) and ash (30%). The reclaimed plots were sown with mixture of rehabilitation grass. Single de-acidifi cation, land fertilization and a further 6-year extensive (without fertilization) use had a different infl uence on the properties of the native soilless substratum. Irrespective of the reclamation manner, after six years land use in the upper layers, observed increase in the average content of available phosphorus, available potassium content does not changed signifi cantly but recorded a tenfold decrease in the content of available magnesium.Unauthenticated Download Date | 5/8/18 6:45 AM
The research was carried out to assess soil condition many years after waste introduction for reclamation purposes. The parameters of the activity of soil microorganisms responsible for the revitalization processes in degraded soils were used in the research. Soil material was derived from the area of the former sulfur mine. The results showed that even a single waste introduction to degraded soil caused long-lasting effects in the activity of soil microorganisms. The most favorable changes were caused by the addition of sewage sludge and the use of mineral wool in the form of a pad. The application of lime alone turned out to be the least beneficial for the revitalization processes, i.e., restoring the homeostasis of biological life in degraded soil. This research is a continuation of study that concerned the initial recultivation period. The obtained research results show the need for monitoring soils reclaimed with waste, not only in the initial period but also in the following years. These results allow evaluation of the usefulness of the parameters of soil microbial activity in monitoring soil environments subjected to strong human pressure. The results can be used to assess the risks associated with the introduction of waste into the environment.
Currently, the cosmetic industry is a very intensively growing part of the economy. Consumer demands are adapted to the current lifestyle, which is based on technological innovations and awareness of the impact of various factors on human health and fitness. There is growing interest in cosmetics based on environmentally friendly natural compounds exerting health-promoting effects. Chemicals with antimicrobial properties used as ingredients in cosmetics ensure their durability and safety. Polyphenolic compounds, peptides, essential oils, and plant extracts characterized by these properties are natural ingredients that can replace synthetic components of cosmetics. The advantage of these compounds is that they exhibit antioxidant, anti-inflammatory, and soothing properties, enhancing the product value in addition to their antimicrobial properties. This review article describes the antimicrobial properties of natural compounds that can protect cosmetics and can replace previously used preservative agents. Various studies indicate that the use of these compounds increases consumer interest in these products and has a positive impact on the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.