Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states.
Adenosine A2A receptor (A2AR) is a G-protein-coupled receptor highly expressed in basal ganglia. Its expression levels are severely reduced in Huntington's disease (HD), and several pharmacological therapies have shown its implication in this neurodegenerative disorder. The main goal of this study was to gain insight into the molecular mechanisms that regulate A2AR gene (ADORA2A) expression in HD. Based on previous data reported by our group, we measured the methylcytosine (5mC) and hydroxymethylcytosine (5hmC) content in the 5'UTR region of ADORA2A in the putamen of HD patients and in the striatum of R6/1 and R6/2 mice at late stages of the disease. In this genomic region, 5mC and 5hmC remained unchanged in both mice strains, although low striatal A2AR levels were associated with reduced 5mC levels in 30-week-old R6/1 mice and reduced 5hmC levels in 12-week-old R6/2 mice in exon m2. In order to analyze when this mechanism appears during the progression of the disease, a time course for A2AR protein levels was carried out in R6/1 mice striatum (8, 12, and 20 weeks of age). A2AR levels were reduced from 12 weeks of age onwards, and this downregulation was concomitant with reduced 5hmC levels in the 5'UTR region of ADORA2A. Interestingly, increased 5mC levels and reduced 5hmC were found in the 5'UTR region of ADORA2A in the putamen of HD patients with respect to age-matched controls. Therefore, an altered DNA methylation pattern in ADORA2A seems to play a role in the pathologically decreased A2AR expression levels found in HD.
Epsilon toxin (Etx) from is a pore-forming protein that crosses the blood-brain barrier, binds to myelin, and, hence, has been suggested to be a putative agent for the onset of multiple sclerosis, a demyelinating neuroinflammatory disease. Recently, myelin and lymphocyte (MAL) protein has been identified to be a key protein in the cytotoxic effect of Etx; however, the association of Etx with the immune system remains a central question. Here, we show that Etx selectively recognizes and kills only human cell lines expressing MAL protein through a direct Etx-MAL protein interaction. Experiments on lymphocytic cell lines revealed that MAL protein-expressing T cells, but not B cells, are sensitive to Etx and reveal that the toxin may be used as a molecular tool to distinguish subpopulations of lymphocytes. The overall results open the door to investigation of the role of Etx and on inflammatory and autoimmune diseases like multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.