Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Nonalcoholic fatty liver disease (NAFLD) is a continuum of liver abnormalities often starting as simple steatosis and to potentially progress into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Because of its increasing prevalence, NAFLD is becoming a major public health concern, in parallel with a worldwide increase in the recurrence rate of diabetes and metabolic syndrome. It has been estimated that NASH cirrhosis may surpass viral hepatitis C and become the leading indication for liver transplantation in the next decades. The broadening of the knowledge about NASH pathogenesis and progression is of pivotal importance for the discovery of new targeted and more effective therapies; aim of this review is to offer a comprehensive and updated overview on NAFLD and NASH pathogenesis, the most recommended treatments, drugs under development and new drug targets. The most relevant in vitro and in vivo models of NAFLD and NASH will be also reviewed, as well as the main molecular pathways involved in NAFLD and NASH development.
It has been previously found that the blockade of metabotropic glutamate receptor type 5 (mGluR5) protects against hepatic ischemia/reperfusion injury and acetaminophen toxicity. The role of mGluR5 in NAFLD has not yet been elucidated. Here, we evaluated the effects of mGluR5 blockade in an in vitro model of steatosis. HepG2 cells were pre-incubated for 12 h with an mGluR5 agonist, a negative allosteric modulator (DHPG and MPEP, respectively) or vehicle, then treated with 1.5 mM oleate/palmitate (O/P) for another 12 h. Cell viability was evaluated with the MTT assay; fat accumulation was measured using the fluorescent dye nile red; SREBP-1, PPAR-α, iNOS and Caspase-3 protein expression were evaluated by Western blot; NFkB activity was evaluated as pNFkB/NFkB ratio. mGluR5 modulation did not alter cell viability in O/P-incubated cells; MPEP prevented intracellular lipid accumulation in O/P treated cells; MPEP administration was also associated with a reversion of O/P-induced changes in SREBP-1 and PPAR-α expression, involved in free fatty acid (FFA) metabolism and uptake. No changes were observed in iNOS and Caspase-3 expression, or in NFkB activity. In conclusion, mGluR5 pharmacological blockade reduced fat accumulation in HepG2 cells incubated with O/P, probably by modulating the expression of SREBP-1 and PPAR-α.
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
We evaluate the effects of the methionine-choline-deficient (MCD) diet on serum and hepatic zinc (Zn) and iron (Fe) and their relationships with matrix metalloproteinases (MMPs) and their modulators (TIMPs and RECK) as well as hepatic fatty acids using male Wistar rats fed 2-, 4- and 8-week MCD diets. Serum and hepatic Zn decrease after an 8-week MCD diet. Serum Fe increases after an 8-week MCD diet and the same occurs for hepatic Fe. An increase in hepatic MMP activity, associated with a decrease in RECK and TIMPs, is found in the MCD 8-week group. Liver Fe shows a positive correlation versus MMPs and RECK, and an inverse correlation versus TIMPs. A positive correlation is found comparing liver Zn with stearic, vaccenic and arachidonic acids, and an inverse correlation is found with linolenic and docosatetraenoic acids. An opposite trend is found between liver Fe versus these fatty acids. During NAFLD progression from steatosis to steatohepatitis, MCD rats exhibit an increase in Zn and a decrease in Fe levels both in serum and tissue associated with alterations in hepatic MMPs and their inhibitors, and fatty acids. The correlations detected between Zn and Fe versus extracellular matrix modulators and fatty acids support their potential role as therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.