, Melissa Yssel, MB ChB, FC Path(SA) Chem
139, and Wendy M. Zakowicz, BS 79 Purpose: To achieve clinical validation of cutoff values for newborn screening by tandem mass spectrometry through a worldwide collaborative effort. Methods: Cumulative percentiles of amino acids and acylcarnitines in dried blood spots of approximately 25-30 million normal newborns and 10,742 deidentified true positive cases are compared to assign clinical significance, which is achieved when the median of a disorder range is, and usually markedly outside, either the 99th or the 1st percentile of the normal population. The cutoff target ranges of analytes and ratios are then defined as the interval between selected percentiles of the two populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity taking all available factors into consideration.
Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusions: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%
Background: Iodine supplementation during pregnancy in areas with mild-to-moderate iodine deficiency is still debated. Methods: A single-center, randomized, single-blind and placebo-controlled (3:2) trial was conducted. We enrolled 90 women before 12 weeks of gestation. From enrollment up until 8 weeks after delivery, 52 women were given an iodine supplement (225 ug/day, potassium iodide tablets) and 38 were given placebo. At recruitment (T0), in the second (T1) and third trimesters (T2), and 8 weeks after delivery (T3), we measured participants’ urinary iodine-to-creatinine ratio (UI/Creat), thyroid function parameters (thyroglobulin (Tg), TSH, FT3, and FT4), and thyroid volume (TV). The newborns’ urinary iodine concentrations were evaluated in 16 cases. Results: Median UI/Creat at recruitment was 53.3 ug/g. UI/Creat was significantly higher in supplemented women at T1 and T2. Tg levels were lower at T1 and T2 in women with UI/Creat ≥ 150 ug/g, and in the Iodine group at T2 (p = 0.02). There was a negative correlation between Tg and UI/Creat throughout the study (p = 0.03, r = −0.1268). A lower TSH level was found in the Iodine group at T3 (p = 0.001). TV increased by +Δ7.43% in the Iodine group, and by +Δ11.17% in the Placebo group. No differences were found between the newborns’ TSH levels on screening the two groups. Conclusion: Tg proved a good parameter for measuring iodine intake in our placebo-controlled series. Iodine supplementation did not prove harmful to pregnancy in areas of mild-to-moderate iodine deficiency, with no appreciable harmful effect on thyroid function.
Our report describes the incidence of CH with delayed TSH rise in North-Eastern Italy and differentiates this clinical condition from other thyroid dysfunctions of preterm or LBW newborns. The second-screening strategy for CH in neonates with BW < 2500 g proved useful in detecting newborns who otherwise would not be identified at the first screening.
Mutations in COL1A1 and COL1A2 genes, encoding the alpha1 and alpha2 chain of type I collagen, respectively, are responsible for the vast majority of cases of osteogenesis imperfecta (OI) (95% of patients with a definite clinical diagnosis). We have investigated 22 OI patients, representing a heterogeneous phenotypic range, at the biochemical and molecular level. A causal mutation in either type I collagen gene was identified in 20 of them: no recurrent mutation was found in unrelated subjects; 15 out of 20 mutations had not been reported previously. In two patients, we could not find any causative mutation in either type I collagen gene, after extensive genomic DNA sequencing. Failure of COL1A1/COL1A2 mutation screening may be due, in a few cases, to further clinical heterogeneity, i.e. additional non-collagenous disease loci are presumably involved in OI types beyond the traditional Sillence's classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.