In this manuscript, we approach the production of biosurfactants as a cleaner alternative to the chemically-produced surfactants currently used in a wide range of industries. Sophorolipids are microbially produced biosurfactants of the glycolipid type that have entered the market in select applications such as detergent or cosmetic formulation ingredients. This study focuses on sophorolipid production by the yeast Starmerella bombicola from stearic acid (C18:0), a low-cost carbon source that is difficult to work with in submerged fermentation since it remains a solid due to its high melting temperature. Consequently, optimizations of solidstate fermentation inoculated with Starmerella bombicola were studied for conversions of stearic acid and molasses to sophorolipids. Polyurethane foam functioned as the inert support. The effect of polyurethane foam density and water holding capacity was assessed and the process was optimized in terms of substrate and inoculum ratio. The best conditions were: foam with a density of 32 kg m-3 at 75% water holding capacity, 1.17:1 molasses/stearic acid (w/w) and 5% (v/w) inoculum, to obtain a yield of 0.211 g sophorolipids per g of substrates. Mass spectrometry revealed that the sophorolipids produced herein had high concentrations of diacetylated acidic and lactonic C18:0 forms. The results of interfacial properties studies revealed that C18:0 sophorolipids had promising surface tension lowering capacity and emulsification behavior. This study describes a new strategy to produce biosurfactants using low environmental impact technologies as an alternative to traditional ways to produce chemical detergents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.