Short-chain carboxylates such as acetate are easily produced through mixed culture fermentation of many biological waste streams, although routinely digested to biogas and combusted rather than harvested. We developed a pipeline to extract and upgrade short-chain carboxylates to esters via membrane electrolysis and biphasic esterification. Carboxylate-rich broths are electrolyzed in a cathodic chamber from which anions flux across an anion exchange membrane into an anodic chamber, resulting in a clean acid concentrate with neither solids nor biomass. Next, the aqueous carboxylic acid concentrate reacts with added alcohol in a water-excluding phase to generate volatile esters. In a batch extraction, 96 ± 1.6% of the total acetate was extracted in 48 h from biorefinery thin stillage (5 g L(-1) acetate) at 379 g m(-2) d(-1) (36% Coulombic efficiency). With continuously regenerated thin stillage, the anolyte was concentrated to 14 g/L acetic acid, and converted at 2.64 g (acetate) L(-1) h(-1) in the first hour to ethyl acetate by the addition of excess ethanol and heating to 70 °C, with a final total conversion of 58 ± 3%. This processing pipeline enables direct production of fine chemicals following undefined mixed culture fermentation, embedding carbon in industrial chemicals rather than returning them to the atmosphere as carbon dioxide.
The presence of elevated concentrations of nitrates in drinking water has become a serious concern worldwide. The use of autotrophic denitrification in microbial fuel cells (MFCs) for waters with low ionic strengths (i.e., 1000 μS·cm(-1)) has not been considered previously. This study evaluated the feasibility of MFC technology for water denitification and also identified and quantified potential energy losses that result from their usage. The low conductivity (<1600 μS·cm(-1)) of water limited the nitrogen removal efficiency and power production of MFCs and led to the incomplete reduction of nitrate and the nitrous oxide (N(2)O) production (between 4 and 20% of nitrogen removed). Cathodic overpotential was identified as the main energy loss factors (83-90% of total losses). That high overpotential was influenced by denitrification intermediates (NO(2)(-) and N(2)O) and the potential used by microorganisms for growth, activation, and maintenance.
Acetate and ethanol can be converted to caproic acid by microorganisms through reverse β-oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even- and odd-carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are energetically feasible. Through incubations of microbial communities with different substrate-pair combinations, we established that ethanol and propanol were both highly suitable for chain elongation. As an electron acceptor, acetate, propionate, and butyrate readily elongated with ethanol, whereas an adaptation period was necessary for formate. Isobutyrate and longer-chained fatty acids above butyrate were not elongated. The microbial communities converged, and consistent enrichment of Clostridium spp. was observed, independent of the supplied alcohol or carboxylate, with a strain related to Clostridium kluyveri dominating the enrichments. Community analysis also showed phylotypes related to Bacteroidaceae and Microbacteriaceae families in all tests that are capable of converting the base substrates to useful intermediates. These organisms were mainly enriched with methanol or formate. Our overall conclusion is thus that multiple substrates can be used for chain elongation and that this process is carried out by highly similar organisms for direct chain elongation irrespective of the substrate.
BackgroundVolatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e− → ½ H2 + OH−) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e− + 2 H+ + O2).ResultsIn this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation.ConclusionsVFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH− is used for pH control without added chemicals, and H2 is metabolized by species such as Megasphaera elsdenii to produce greater value, more reduced VFA. Electro-fermentation displays promise for generating added value chemical co-products from biorefinery sidestreams and wastes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0396-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.