Purpose
The European Task Force for chronic non-invasive ventilation in stable COPD recommends the use of high pressure-support (PS) level to maximize the decrease in PaCO2. It is possible that the ventilator model can influence the need for higher or lower pressure levels.
Research Question
To determine the differences between ventilators in a bench model with an increased inspiratory demand; and to compare the degree of muscular unloading measured by parasternal electromyogram (EMGpara) provided by the different ventilators in real patients with stable COPD.
Patients and Methods
Bench: four levels of increasing progressive effort were programmed. The response of nine ventilators to four levels of PS and EPAP of 5 cm H2O was studied. The pressure-time product was determined at 300 and 500 msec (PTP 300/500).
Clinical Study
The ventilators were divided into two groups, based on the result of the bench test. Severe COPD patients with non-invasive ventilation (NIV) were studied, randomly comparing the performance of one ventilator from each group. Muscle unloading was measured by the decrease in EMGpara from its baseline value.
Results
There were significant differences in PTP 300 and PTP 500 in the bench study. Based on these results, home ventilators were classified into two groups; group 1 included four models with higher PTP 300. Ten COPD patients were recruited for the clinical study. Group 1 ventilators showed greater muscle unloading at the same PS than group 2.
Conclusion
The scale of pressure support in NIV for high intensity ventilation may be influenced by the ventilator model.
Clinical Trials.gov
NCT03373175.
Treatments that require the introduction of external gas into the non-invasive ventilation (NIV) circuit, such as aerosol and oxygen therapy, may influence the performance of the ventilator trigger system. The aim of the study was to determine the presence and type of asynchronies induced by external gas in the NIV circuit in a bench model and in a group of patients undergoing chronic NIV. Bench study: Four ventilators (one with two different trigger design types) and three gas sources (continuous flow at 4 and 9 l/min and pulsatile flow at 9 l/min) were selected in an active simulator model. The sensitivity of the trigger, the gas introduction position, the ventilatory pattern and the level of effort were also modified. The same ventilators and gas conditions were used in patients undergoing chronic NIV. Bench: the introduction of external gas caused asynchronies in 35.9% of cases (autotriggering 73%, ineffective effort 27%). Significant differences (p < 0.01) were detected according to the ventilator model and the gas source. In seven patients, the introduction of external gas induced asynchrony in 20.4% of situations (77% autotriggering). As in the bench study, there were differences in the occurrence of asynchronies depending on the ventilator model and gas source used. The introduction of external gas produces alterations in the ventilator trigger. These alterations are variable, and depend on the ventilator design and gas source. This phenomenon makes it advisable to monitor the patient at the start of treatment.
Electronic poster abstracts P14.07: Table 1. Blood flow velocimetry PI in maternal and fetal vessels Blood vessel 1st stage of labour Mean ± SD 2nd stage of labour Mean ± SD P RT UtA 0.88 ± 0.25 0.81 ± 0.16 0.19 LT UtA 0.88 ± 0.32 0.73 ± 0.18 0.005 UA 0.72 ± 0.17 0.84 ± 0.33 0.05 P14.08 Quantification of the utero-placental vascularisation with the 3D Doppler: impact of the machine settings
Background and objective: Treatments that require the introduction of external gas into the non-invasive ventilation (NIV) circuit, such as aerosol and oxygen therapy, may influence the performance of the ventilator trigger system. The aim of the study was to determine the presence and type of asynchronies induced by external gas in the NIV circuit in a bench model and in a group of patients undergoing chronic NIV.Methods: Bench study: Four ventilators (one with two different trigger design types) and three gas sources (continuous flow at 4 and 9 l/min and pulsatile flow at 9 l/min) were selected in an active simulator model. The sensitivity of the trigger, the gas introduction position, the ventilatory pattern and the level of effort were also modified.Clinical study: The same ventilators and gas conditions were used in patients undergoing chronic NIV.Results: Bench: The introduction of external gas caused asynchronies in 35.9% of cases (autotriggering 73%, ineffective effort 27%). Significant differences (p<0.01) were detected according to the ventilator model and the gas source.Clinical study: In seven patients, the introduction of external gas induced asynchrony in 20.4% of situations (77% autotriggering). As in the bench study, there were differences in the occurrence of asynchronies depending on the ventilator model and gas source used.Conclusion: The introduction of external gas produces alterations in the ventilator trigger. These alterations are variable, and depend on the ventilator design and gas source. This phenomenon makes it advisable to monitor the patient at the start of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.