Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium, the causative agent of malaria and Toxoplasma, one of the most widespread zoonotic pathogens. Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion 1 . Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function 2 . The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals or plants.Here we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple Non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata, and Apicomplexa, that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defense for free-living unicellular eukaryotes and host cell injection in intracellular parasites.Apicomplexan parasites are invasive and defined by the presence of an apical complex used to recognize and gain entry into host cells. It includes two secretory organelles: micronemes and rhoptries 3 . Microneme proteins are secreted to the parasite surface and mediate motility, host cell recognition and invasion 4 . Rhoptry proteins are injected directly into the host cell 2 , where they anchor the machinery propelling the parasite into the host cell 5 , facilitate nutrient
Antimicrobial peptides are small molecules with activity against bacteria, yeasts, fungi, viruses, bacteria, and even tumor cells that make these molecules attractive as therapeutic agents. Due to the alarming increase of antimicrobial resistance, interest in alternative antimicrobial agents has led to the exploitation of antimicrobial peptides, both synthetic and from natural sources. Thus, many peptide-based drugs are currently commercially available for the treatment of numerous ailments, such as hepatitis C, myeloma, skin infections, and diabetes. Initial barriers are being increasingly overcome with the development of cost-effective, more stable peptides. Herein, we review the available strategies for their synthesis, bioinformatics tools for the rational design of antimicrobial peptides with enhanced therapeutic indices, hurdles and shortcomings limiting the large-scale production of AMPs, as well as the challenges that the pharmaceutical industry faces on their use as therapeutic agents.
Despite the importance of saliva in the regulation of oral cavity homeostasis, few studies have been conducted to quantitatively compare the saliva of different mammal species. Aiming to define a proteome signature of mammals' saliva, an in-depth SDS-PAGE-LC coupled to MS/MS (GeLC-MS/MS) approach was used to characterize the saliva from primates (human), carnivores (dog), glires (rat and rabbit), and ungulates (sheep, cattle, horse). Despite the high variability in the number of distinct proteins identified per species, most protein families were shared by the mammals studied with the exception of cattle and horse. Alpha-amylase is an example that seems to reflect the natural selection related to digestion efficacy and food recognition. Casein protein family was identified in all species but human, suggesting an alternative to statherin in the protection of hard tissues. Overall, data suggest that different proteins might assure a similar role in the regulation of oral cavity homeostasis, potentially explaining the specific mammals' salivary proteome signature. Moreover, some protein families were identified for the first time in the saliva of some species, the presence of proline-rich proteins in rabbit's saliva being a good example.
Glycoconjugates are important mediators of host-pathogen interactions and are usually very abundant in the surface of many protozoan parasites. However, in the particular case of Plasmodium species, previous works show that glycosylphosphatidylinositol anchor modifications, and to an unknown extent, a severely truncated N-glycosylation are the only glycosylation processes taking place in the parasite. Nevertheless, a detailed analysis of the parasite genome and the recent identification of the sugar nucleotide precursors biosynthesized by Plasmodium falciparum support a picture in which several overlooked, albeit not very prominent glycosylations may be occurring during the parasite life cycle. In this work, the authors review recent developments in the characterization of the biosynthesis of glycosylation precursors in the parasite, focusing on the outline of the possible fates of these precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.