Aims Understanding fine‐grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine‐grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi‐natural) grasslands and natural grasslands are the richest vegetation type. The open‐access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high‐quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation‐plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology.
The increasing dominance of competitive plant species may reduce species richness of plant communities. Yet, species richness may depend on spatial scale and the alien versus native status of the dominant species. To explore the dominance effects of alien versus native species on species richness, we sampled semi-natural grasslands in southwestern Poland. We established 100 m 2 squares at different grassland sites, and in two opposite corners we placed two series of five nested plots (0.001, 0.01, 0.1, 1 and 10 m 2), in which we recorded all vascular plant species. Next, we selected squares with a strongly dominant plant in one corner (high-dominance series) and with no strong dominant in the opposite corner (low-dominance series). The number of species per plot and the slopes of the species-area curves fitted to each nested-plot series were used to assess whether the alien vs. native status of the dominant species influences species-richness pattern across scales. We found a significantly lower number of species in the high-dominance series than in the low-dominance series, regardless of the alien versus native status of the dominant species. The slopes of the species-area curves indicated that the rate of species accumulation with increasing area was faster in the high-dominance series than in the low-dominance series; however, this pattern did not depend on the alien vs. native status of the dominants. Our study confirms that increasing dominance is linked to a decline in species richness, but reveals that alien dominants do not have a stronger impact than native dominants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.