Acrylamide (AA) is a neurotoxic and carcinogenic substance that has recently been discovered in food. One of the factors affecting its formation is the heat treatment method. This review discusses the microwave heating as one of the methods of thermal food processing and the influence of microwave radiation on the acrylamide formation in food. In addition, conventional and microwave heating were compared, especially the way they affect the AA formation in food. Available studies demonstrate differences in the mechanisms of microwave and conventional heating. These differences may be beneficial or detrimental depending on different processes. The published studies showed that microwave heating at a high power level can cause greater AA formation in products than conventional food heat treatment. The higher content of acrylamide in microwave-heated foods may be due to differences in its formation during microwave heating and conventional methods. At the same time, short exposure to microwaves (during blanching and thawing) at low power may even limit the formation of acrylamide during the final heat treatment. Considering the possible harmful effects of microwave heating on food quality (e.g., intensive formation of acrylamide), further research in this direction should be carried out.
Due to the different levels of bioactive compounds in tea reported in the literature, the aim of this study was to determine whether commercially available leaf teas could be an important source of phenolics and selected minerals (copper, manganese, iron, zinc, magnesium, calcium, sodium, potassium) and if the differences in the content of these components between various types of tea are significant. It was found that both the amount of these compounds in tea and the antioxidant activity of tea infusions were largely determined by the origin of tea leaves as well as the processing method, which can modify the content of the studied components up to several hundred-fold. The group of green teas was the best source of phenolic compounds (110.73 mg/100 mL) and magnesium (1885 µg/100 mL) and was also characterised by the highest antioxidant activity (59.02%). This type of tea is a great contributor to the daily intake of the studied components. The average consumption of green tea infusions, assumed to be 3–4 cups (1 L) a day, provides the body with health-promoting polyphenol levels significantly exceeding the recommended daily dose. Moreover, drinking one litre of an unfermented tea infusion provides more than three times the recommended daily intake of manganese. Tea infusions can be a fairly adequate, but only a supplementary, source of potassium, zinc, magnesium, and copper in the diet. Moreover, it could be concluded that the antioxidant activity of all the analysed types of tea infusions results not only from the high content of phenolic compounds and manganese but is also related to the presence of magnesium and potassium.
Determining acrylamide (AA) content in foods using chromatographic methods is expensive and time-consuming. Therefore, there is a need to develop a simple, economical method for monitoring the content of acrylamide in foods. This study analysed whether there is a relationship between acrylamide levels with some heat-induced parameters, such as 5-hydroxymethylfurfural (HMF) and browning, in order to assess their usefulness in predicting the potential acrylamide levels in market-purchased food. Sixty plant-based food products were tested. The correlation coefficients for AA levels with L*, a* and b* values and HMF content were significant (p < 0.05) for French fries and potato chips. There was no statistically significant correlation between thermal-processing indexes (HMF and colour parameters) and acrylamide levels in commercial bread, breakfast cereals and biscuits. The results indicate that these classical thermal-processing indexes are not directly related to the acrylamide content in commercial cereal-based food and they cannot be indicators of AA level. Thus, the correlation between HMF and colour parameters with acrylamide content depends on the type of food and it is difficult to estimate the amount of AA based on these classical thermal-processing indexes of market-purchased food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.