MicroRNAs (miRNAs) represent a family of small non-coding ribonucleic acids that post-transcriptionally inhibits the expression of their target messenger RNAs (mRNAs), thereby acting as general gene repressors. In this study we examined the relative quantity and stability of miRNA subjected to a long period of freezing; we compared the stability of eight miRNAs in the plasma of five human healthy controls before freezing and after six and 12 months of storage at −80 °C. In addition, we examined the plasma frozen for 14 years and the amount of miRNA still available. Using a Life Technologies protocol to amplify and quantify plasma miRNAs from EDTA (Ethylene Diamine Tetraacetic Acid)-treated blood, we analyzed the stability of eight miRNAs, (miR-125b-5p, miR-425-5p, miR-200b-5p, miR-200c-3p, miR-579-3p, miR-212-3p, miR-126-3p, and miR-21-5p). The miRNAs analyzed showed a high stability and long frozen half-life.
BackgroundThis study examined the effect of storage temperature on the protein profile of human plasma. Plasma samples were stored for 13 days at -80°C, -20°C, +4°C and room temperature (20-25°C) prior to proteomic analysis. The proteomic comparisons were based on the differences of mean intensity values of protein spots between fresh plasma samples (named “time zero”) and plasma samples stored at different temperatures. To better understand the thermally induced biochemical changes that may affect plasma proteins during storage we identified proteins with different expressions with respect to the time zero sample.ResultsUsing two-dimensional electrophoresis followed by MALDI-TOF MS and /or LC-MS/MS 20 protein spots representing 10 proteins were identified with significant differences in abundance when stored at different temperatures. Our results, in agreement with various authors, indicate that during storage for a short period (13 days) at four different temperatures plasma proteins were more affected by degradation processes at +4°C compared to the other temperatures analysed. However, we founded that numerous protein spots (vitamin D binding protein, alpha-1-antitrypsin, serotransferrin, apoplipoprotein A-I, apolipoprotein E, haptoglobin and complement factor B) decrease in abundance with increasing temperature up to 4°C, but at room temperature their intensity mean values are similar to those of time zero and -80°C. We hypothesize that these proteins are labile at 4°C, but at the same time they are stable at room temperature (20-25°C). Furthermore we have grouped the proteins based on their different sensitivity to the storage temperature. Spots of serum albumin, fibrinogen gamma chain and haptoglobin are more resistant to the higher temperatures tested, as they have undergone changes in abundance only at room temperature; conversely, other spots of serum albumin, fibrinogen beta chain and serotransferrin are more labile as they have undergone changes in abundance at all temperatures except at -80°C.ConclusionsAlthough there are many studies concerning protein stability of clinical samples during storage these findings may help to provide a better understanding of the changes of proteins induced by storage temperature.
The role of Clusterin in attenuation of inflammation and reverse cholesterol transfer makes this molecule a potential candidate as a marker for cancer, cardiovascular disease, diabetes mellitus, and metabolic syndrome. In elderly subjects cardiovascular diseases represent the primary cause of death and different clinical studies have shown a positive correlation of these diseases with changes in the lipid pattern. This work aimed at evaluating the relationship between circulating clusterin and the biochemical parameters that characterize the lipid profile of a Sardinian population divided into five age groups including centenarians; the high frequency in Sardinia of these long-lived individuals gave us the opportunity to extend the range of the age groups to be analyzed to older ages and to better evaluate the changes in the lipid balance during ageing and its relationship with clusterin concentration in plasma. Our results showed that Clusterin concentration values of the youngest group were more similar with the centenarian’s group compared to the other age groups, and a positive correlation arises with LDL. Furthermore given the high prevalence of cardiovascular diseases in the population examined and the association of Clusterin with these pathologies we evaluated Clusterin concentration variation in two groups with or without cardiovascular diseases. In presence of cardiovascular disease, Clusterin is significantly related to the most atherogenic components of lipid profile (total cholesterol and LDL), especially in women, suggesting its potential role in modulating cardiovascular metabolic risk factors.
Micro-RNA (miRNA) are a family of small non-coding ribonucleic acids that inhibits post-transcriptionally the expression of their target messenger RNA (mRNA). We are interested in studying the involvement of miRNA in longevity and autoimmune diseases. In this study we compared the different expression of seven microRNAs between human plasma healthy controls, plasma samples of centenarians and samples from patients with rheumatoid arthritis. We used the Life Technologies' protocol to quantify seven miRNAs from 62 plasma samples: 20 healthy human controls, 14 centenarians, 28 patients with rheumatoid arthritis. TaqMan MicroRNA assays were used to analyze the expression profiles of miR-125b-5p, miR-425-5p, miR-200b5p, miR-200c-3p, miR-579-3p, miR-212-3p, miR-21-5p and miR-126-3p. The relative expression of mature miRNAs was analyzed using software REST. Our results show that miR-425-5p, miR-21 and miR-212 significantly decreased in centenarians and in patients with rheumatoid arthritis compared with controls. Furthermore in this work we highlight a connection between corticosteroid treatment and miRNAs expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.