Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase complex plays a key role in cancer formation by telomere dependent or independent mechanisms. Telomere maintenance mechanisms include complex TERT changes such as gene amplifications, TERT structural variants, TERT promoter germline and somatic mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them are cancer specific at tissue histotype and at single cell level. TERT expression is regulated in tumors via multiple genetic and epigenetic alterations which affect telomerase activity. Telomerase activity via TERT expression has an impact on telomere length and can be a useful marker in diagnosis and prognosis of various cancers and a new therapy approach. In this review we want to highlight the main roles of TERT in different mechanisms of cancer development and regulation.
Sleep bruxism (SB) and obstructive sleep apnea (OSA) are co-occurring sleep conditions. The study aimed to evaluate the association of selected single-nucleotide polymorphisms (SNPs) occurring within the genes of the serotonin and dopamine pathways in SB and OSA and investigate the relationship between them. The study group included 100 Caucasian patients. SB and OSA were diagnosed in 74 and 28 patients, respectively. In addition, 125 unrelated Caucasian healthy blood donors served as randomly selected controls to enable comparison of polymorphisms. The following SNPs were analyzed: rs2770304 and rs6313 within the serotonin receptor encoding gene (HTR2A), rs4680 polymorphism of the catechol-O-methyltransferase (COMT) gene, and rs686 within the dopamine receptor (DRD1) encoding gene. The prevalence of the DRD1 rs686 G variant (GG homozygosity) was found to be high in the study group compared to the control group. Bruxism episode index (BEI) was found to be significantly increased in the HTR2A rs6313 TT homozygotes compared to the heterozygous patients. Moreover, within a group of the HTR2A rs2770304 TT homozygous cases, a statistically significant correlation was observed between BEI and apnea–hypopnea index. These results indicate that DRD1 rs686 may potentially affect predisposition to SB, that HTR2A rs6313 SNP may be involved in SB pathogenesis, and that HTR2A rs2770304 polymorphism might contribute to the association between SB and OSA. This suggests a possible genetic contribution to the etiology of primary SB.
IL-6 is a pro-inflammatory cytokine involved in development of rheumatoid arthritis (RA). The present study aimed to determine the possible association of the IL6 (rs1800795, G>C) polymorphism with RA susceptibility, disease progression and protein serum levels. Distribution of IL6 alleles and genotypes was similar in RA patients and controls. As expected, patients before induction of anti-TNF agents had significantly higher IL-6 levels as compared to controls (p=0.002). The CC homozygous patients were characterized with the highest average concentrations of this pro-inflammatory cytokine before treatment (p=0.028) and they also more frequently presented with more active disease (p=0.048). These results imply that the IL6 rs1800795 CC homozygosity may play a rather unfavourable role in RA. This article is protected by copyright. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.