The second generation Antarctic magnetic anomaly compilation for the region south of 60°S includes some 3.5 million line-km of aeromagnetic and marine magnetic data that more than doubles the initial map's near-surface database. For the new compilation, the magnetic data sets were corrected for the International Geomagnetic Reference Field, diurnal effects, and high-frequency errors and leveled, gridded, and stitched together. The new magnetic data further constrain the crustal architecture and geological evolution of the Antarctic Peninsula and the West Antarctic Rift System in West Antarctica, as well as Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica and the circumjacent oceanic margins. Overall, the magnetic anomaly compilation helps unify disparate regional geologic and geophysical studies by providing new constraints on major tectonic and magmatic processes that affected the Antarctic from Precambrian to Cenozoic times.Plain Language Summary Given the ubiquitous polar cover of snow, ice, and seawater, the magnetic anomaly compilation offers important constraints on the global tectonic processes and crustal properties of the Antarctic. It also links widely separated areas of outcrop to help unify disparate geologic studies and provides insights on the lithospheric transition between Antarctica and adjacent oceans, as well as the geodynamic evolution of the Antarctic lithosphere in the assembly and breakup of the Gondwana, Rodinia, and Columbia supercontinents and key piercing points for reconstructing linkages between the protocontinents. The magnetic data together with ice-probing radar and gravity information greatly facilitate understanding the evolution of fundamental large-scale geological processes such as continental rifting, intraplate mountain building, subduction and terrane accretion processes, and intraplate basin formation.
Long-range airborne geophysical measurements were carried out in the ICEGRAV campaigns, covering hitherto unexplored parts of interior East Antarctica and part of the Antarctic Peninsula. The airborne surveys provided a regional coverage of gravity, magnetic and icepenetrating radar measurements for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations, such as AntGP for gravity data, ADMAP for magnetic data and BEDMAP2 for ice thickness data and the sub-ice topography. We present the first maps of gravity, magnetic and ice thickness data and bedrock topography for the region and show examples of bedrock topography and basal reflectivity patterns. The 2013 Recovery Lakes campaign was carried out with a British Antarctic Survey Twin Otter aircraft operating from the Halley and Belgrano II stations, as well as a remote field camp located at the Recovery subglacial Lake B site. Gravity measurements were the primary driver for the survey, with two airborne gravimeters (Lacoste and Romberg and Chekan-AM) providing measurements at an accuracy level of around 2 mGal r.m.s., supplementing GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite data and confirming an excellent sub-milligal agreement between satellite and airborne data at longer wavelengths.Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.