The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes I(h)-Sc(3)N@C(80) and I(h)-Y(3)N@C(80) connected to an electron-donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3-dipolar cycloaddition reactions of azomethine ylides and Bingel-Hirsch-type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y(3)N@C(80)-based dyads and the [5,6] regioisomers in the case of Sc(3)N@C(80)-based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]-Y(3)N@C(80)-based dyads, whereas the [5,6]-Sc(3)N@C(80)-based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl-Sc(3)N@C(80)-fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron-transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C(60) dyad.
Intriguing materials for photovoltaics: The first trimetallic nitride endohedral metallofullerene covalently connected to a donor group is efficiently synthesized in a 1,3‐dipolar cycloaddition reaction. Exclusive formation of the [5,6]‐regioisomer in the isolated N‐methyl‐2‐ferrocenyl‐Ih‐Sc3N@C80‐fulleropyrrolidine is confirmed by NMR spectroscopy and electrochemistry (see picture).
This review is focused on current state-of-the-art research on electroactive-based materials and their synthesis, as well as their physicochemical and biological properties. Special attention is paid to pristine intrinsically conducting polymers (ICPs) and their composites with other organic and inorganic components, well-defined micro- and nanostructures, and enhanced surface areas compared with those of conventionally prepared ICPs. Hydrogels, due to their defined porous structures and being filled with aqueous solution, offer the ability to increase the amount of immobilized chemical, biological or biochemical molecules. When other components are incorporated into ICPs, the materials form composites; in this particular case, they form conductive composites. The design and synthesis of conductive composites result in the inheritance of the advantages of each component and offer new features because of the synergistic effects between the components. The resulting structures of ICPs, conducting polymer hydrogels and their composites, as well as the unusual physicochemical properties, biocompatibility and multi-functionality of these materials, facilitate their bioapplications. The synergistic effects between constituents have made these materials particularly attractive as sensing elements for biological agents, and they also enable the immobilization of bioreceptors such as enzymes, antigen-antibodies, and nucleic acids onto their surfaces for the detection of an array of biological agents. Currently, these materials have unlimited applicability in biomedicine. In this review, we have limited discussion to three areas in which it seems that the use of ICPs and materials, including their different forms, are particularly interesting, namely, biosensors, delivery of drugs and tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.