Accumulation of amyloid- (A) is thought to play a central role in the progressive loss of synapses, the neurite damage, and the neuronal death that are characteristic in brains affected by Alzheimer's disease. However, the mechanisms through which A produces such neurotoxicity remain unclear. Because A depresses synaptic activity, we investigated whether the neurotoxicity of A depends on the expression of NP1, a protein involved in excitatory synapse remodeling that has recently been shown to mediate neuronal death induced by reduction in neuronal activity in mature neurons. We found that treatment of cortical neurons in culture with A produces a marked increase in NP1 protein that precedes apoptotic neurotoxicity. Silencing NP1 gene expression by RNA interference (short hairpin RNA for RNA interference) prevents the loss of synapses, the reduction in neurite outgrowth, and the apoptosis evoked by A. Transgene overexpression of NP1 reproduced these neurotoxic effects of A. Moreover, we found that NP1 was increased in dystrophic neurites of brains from patients with sporadic late-onset Alzheimer's disease. Dual immunohistochemistry for NP1 and tau showed that NP1 colocalizes with tau deposits in dystrophic neurites. Furthermore, NP1 colocalized with SNAP-25 (synaptosomal-associated protein of 25 kDa) in the majority of dystrophic neurites surrounding amyloid deposits. NP1 was also increased in cell processes surrounding amyloid plaques in the cerebral cortex and hippocampus of APP/PS1 (mutant amyloid precursor protein/presenilin 1) transgenic mice. These findings show that NP1 is a key factor for the synapse loss, the neurite damage, and the apoptotic neuronal death evoked by A and indicate that A contributes to the pathology of Alzheimer's disease by regulating NP1 expression.
Expression of neuronal pentraxin 1 (NP1) is part of the apoptotic cell death program activated in mature cerebellar granule neurons when potassium concentrations drop below depolarizing levels. NP1 is a glycoprotein homologous to the pentraxins of the acute phase immune response, and it is involved in both synaptogenesis and synaptic remodeling. However, how it participates in the process of apoptotic neuronal death remains unclear. We have studied whether the signaling pathways known to control neuronal cell death and survival influence NP1 expression. Both activation of the phosphatidylinositol 3-kinase/Akt (PI-3-K/AKT) pathway by insulin-like growth factor I and pharmacological blockage of the stress activated c-Jun NH 2 -terminal kinase (JNK) offer transitory neuroprotection from the cell death evoked by nondepolarizing concentrations of potassium. However, neither of these neuroprotective treatments prevents the overexpression of NP1 upon potassium depletion, indicating that nondepolarizing conditions activate additional cell death signaling pathways. Inhibiting the phosphorylation of the p38 mitogen-activated protein kinase without modifying JNK, neither diminishes cell death nor inhibits NP1 overexpression in nondepolarizing conditions. In contrast, impairing the activity of glycogen synthase kinase 3 (GSK3) completely blocks NP1 overexpression induced by potassium depletion and provides transient protection against cell death. Moreover, simultaneous pharmacological blockage of both JNK and GSK3 activities provides long-term protection against the cell death evoked by potassium depletion. These results show that both the JNK and GSK3 signaling pathways are the main routes by which potassium deprivation activates apoptotic cell death, and that NP1 overexpression is regulated by GSK3 activity independently of the PI-3-K/AKT or JNK pathway.
In cultured cerebellar granule neurons, low neuronal activity triggers the intrinsic program of apoptosis, which requires protein synthesis-dependent BAX translocation to mitochondria, a process that may underlie neuronal damage in neurodegeneration. However, the mechanisms that link neuronal activity with the induction of the mitochondrial program of apoptosis remain unclear. Neuronal pentraxin 1 (NP1) is a pro-apoptotic protein induced by low neuronal activity that is increased in damaged neurites in Alzheimer's disease-affected brains. Here we report that NP1 facilitates the accumulation of BAX in mitochondria and regulates mitochondrial dynamics during apoptosis in rat and mouse cerebellar granule neurons in culture. Reduction of neuronal activity increases NP1 protein levels in mitochondria and contributes to mitochondrial fragmentation in a Bax-dependent manner. In addition, NP1 is involved in mitochondrial transport in healthy neurons. These results show that NP1 is targeted to mitochondria acting upstream of BAX and uncover a novel function for NP1 in the regulation of mitochondrial dynamics and trafficking during apoptotic neurodegeneration.
Glucose deprivation (GD) enhances the sensitivity of cerebellar granule cells to die by excitotoxicity. Neither 70 min of GD, a treatment that depletes cell energy resources, nor exposure to 20 microM glutamate (GLU) for 30 min, induce significant cell death in cultures of cerebellar granule cells. However, the combined treatment with GLU and GD induces choline (Cho) release before excitotoxic cell death. We investigated whether the neurotoxic effect of this treatment is related with inhibition of phosphatidylcholine (PC) synthesis. We found that exposure to GLU for 30 min, to GD for 70 min, and to the combination of both, inhibited PC synthesis at the end of treatment by 71%, 92% and 91%, respectively. The inhibition of PC synthesis was accompanied by a decrease in the incorporation of [(3)H]Cho into phosphocholine and by an increase of the intracellular content of free [(3)H]Cho, indicating that these treatments inhibit the synthesis of PC by inhibiting choline kinase activity. However, only the combined treatment with GLU and GD induced a prolonged inhibition of PC synthesis that extended after the end of treatment. These results show that excitotoxic death is associated with sustained inhibition of PC synthesis and suggest that this effect of the combined treatment with GLU and GD on PC synthesis is produced by an action on an enzymatic step downstream of choline kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.