This article describes a new application of key psychological concepts in the area of Sociometry for the selection of workers within organizations in which projects are developed. The project manager can use a new procedure to determine which individuals should be chosen from a given pool of resources and how to combine them into one or several simultaneous groups/projects in order to assure the highest possible overall work efficiency from the standpoint of social interaction. The optimization process was carried out by means of matrix calculations performed using a computer or even manually, and based on a number of new ratios generated ad-hoc and composed on the basis of indices frequently used in Sociometry.
"Estimating future bidding performance of competitor bidders in capped tenders." Journal of Civil Engineering and Management. In press. 1-12.http://dx.doi.org/10. 3846/13923730.2014.914096 The authors recommend going to the publisher's website in order to access the full paper.If this paper helped you somehow in your research, feel free to cite it. This author's version of the manuscript was downloaded totally free from: Abstract. Research in Bid Tender Forecasting Models (BTFM) has been in progress since the 1950s. None of the developed models were easy-to-use tools for effective use by bidding practitioners because the advanced mathematical apparatus and massive data inputs required. This scenario began to change in 2012 with the development of the Smartbid BTFM, a quite simple model that presents a series of graphs that enables any project manager to study competitors using a relatively short historical tender dataset. However, despite the advantages of this new model, so far, it is still necessary to study all the auction participants as an indivisible group; that is, the original BTFM was not devised for analyzing the behavior of a single bidding competitor or a subgroup of them. The present paper tries to solve that flaw and presents a stand-alone methodology useful for estimating future competitors' bidding behaviors separately.Keywords: bid, tender, auction, construction, score, forecast.Reference to this paper should be made as follows: Ballesteros-Pérez, P.; González-Cruz, M. C.; Fernández-Diego, M.; Pellicer, E. 2014. Estimating future bidding performance of competitor bidders in capped tenders, Journal of Civil Engineering and Management
Context: The International Software Benchmarking Standards Group (ISBSG) maintains a software development repository with over 6,000 software projects. This dataset makes it possible to estimate a project"s size, effort, duration, and cost. Objective: The aim of this study was to determine how and to what extent, ISBSG has been used by researchers from 2000, when the first papers were published, until June of 2012. Method: A systematic mapping review was used as the research method, which was applied to over 129 papers obtained after the filtering process. Results: The papers were published in 19 journals and 40 conferences. Thirty-five percent of the papers published between years 2000 and 2011 have received at least one citation in journals and only five papers have received six or more citations. Effort variable is the focus of 70.5% of the papers, 22.5% center their research in a variable different from effort and 7% do not consider any target variable. Additionally, in as many as 70.5% of papers, effort estimation is the research topic, followed by dataset properties (36.4%). The more frequent methods are Regression (61.2 %), Machine Learning (35.7%), and Estimation by Analogy (22.5%). ISBSG is used as the only support in 55% of the papers while the remaining papers use complementary datasets. The ISBSG release 10 is used most frequently with 32 references. Finally, some benefits and drawbacks of the usage of ISBSG have been highlighted. Conclusion: This work presents a snapshot of the existing usage of ISBSG in software development research. ISBSG offers a wealth of information regarding practices from a wide range of organizations, applications, and development types, which constitutes its main potential. However, a data preparation process is required before any analysis. Lastly, the potential of ISBSG to develop new research is also outlined. Keywords
The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.
A large number of metrics with which to assess the quality of cloud services have been proposed over the last years. However, this knowledge is still dispersed, and stakeholders have little or no guidance when choosing metrics that will be suitable to evaluate their cloud services. The objective of this paper is, therefore, to systematically identify, taxonomically classify, and compare existing quality of service (QoS) metrics in the cloud computing domain. We conducted a systematic literature review of 84 studies selected from a set of 4333 studies that were published from 2006 to November 2018. We specifically identified 470 metric operationalizations that were then classified using a taxonomy, which is also introduced in this paper. The data extracted from the metrics were subsequently analyzed using thematic analysis. The findings indicated that most metrics evaluate quality attributes related to performance efficiency (64%) and that there is a need for metrics that evaluate other characteristics, such as security and compatibility. The majority of the metrics are used during the Operation phase of the cloud services and are applied to the running service. Our results also revealed that metrics for cloud services are still in the early stages of maturity-only 10% of the metrics had been empirically validated. The proposed taxonomy can be used by practitioners as a guideline when specifying service level objectives or deciding which metric is best suited to the evaluation of their cloud services, and by researchers as a comprehensive quality framework in which to evaluate their approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.