It is important to know the spectrum of the microbial aetiology of prosthetic joint infections (PJIs) to guide empiric treatment and establish antimicrobial prophylaxis in joint replacements. There are no available data based on large contemporary patient cohorts. We sought to characterize the causative pathogens of PJIs and to evaluate trends in the microbial aetiology. We hypothesized that the frequency of antimicrobial-resistant organisms in PJIs has increased in the recent years. We performed a cohort study in 19 hospitals in Spain, from 2003 to 2012. For each 2-year period (2003-2004 to 2011-2012), the incidence of microorganisms causing PJIs and multidrug-resistant bacteria was assessed. Temporal trends over the study period were evaluated. We included 2524 consecutive adult patients with a diagnosis of PJI. A microbiological diagnosis was obtained for 2288 cases (90.6%). Staphylococci were the most common cause of infection (1492, 65.2%). However, a statistically significant rising linear trend was observed for the proportion of infections caused by Gram-negative bacilli, mainly due to the increase in the last 2-year period (25% in 2003-2004, 33.3% in 2011-2012; p 0.024 for trend). No particular species contributed disproportionally to this overall increase. The percentage of multidrug-resistant bacteria PJIs increased from 9.3% in 2003-2004 to 15.8% in 2011-2012 (p 0.008), mainly because of the significant rise in multidrug-resistant Gram-negative bacilli (from 5.3% in 2003-2004 to 8.2% in 2011-2012; p 0.032). The observed trends have important implications for the management of PJIs and prophylaxis in joint replacements.
BackgroundC-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) have been shown to be useful for diagnosis of prosthetic hip and knee infection. Little information is available on CRP and ESR in patients undergoing revision or resection of shoulder arthroplasties or spine implants.Methods/ResultsWe analyzed preoperative CRP and ESR in 636 subjects who underwent knee (n = 297), hip (n = 221) or shoulder (n = 64) arthroplasty, or spine implant (n = 54) removal. A standardized definition of orthopedic implant-associated infection was applied. Receiver operating curve analysis was used to determine ideal cutoff values for differentiating infected from non-infected cases. ESR was significantly different in subjects with aseptic failure infection of knee (median 11 and 53.5 mm/h, respectively, p = <0.0001) and hip (median 11 and 30 mm/h, respectively, p = <0.0001) arthroplasties and spine implants (median 10 and 48.5 mm/h, respectively, p = 0.0033), but not shoulder arthroplasties (median 10 and 9 mm/h, respectively, p = 0.9883). Optimized ESR cutoffs for knee, hip and shoulder arthroplasties and spine implants were 19, 13, 26, and 45 mm/h, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 89 and 74% for knee, 82 and 60% for hip, and 32 and 93% for shoulder arthroplasties, and 57 and 90% for spine implants. CRP was significantly different in subjects with aseptic failure and infection of knee (median 4 and 51 mg/l, respectively, p<0.0001), hip (median 3 and 18 mg/l, respectively, p<0.0001), and shoulder (median 3 and 10 mg/l, respectively, p = 0.01) arthroplasties, and spine implants (median 3 and 20 mg/l, respectively, p = 0.0011). Optimized CRP cutoffs for knee, hip, and shoulder arthroplasties, and spine implants were 14.5, 10.3, 7, and 4.6 mg/l, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 79 and 88% for knee, 74 and 79% for hip, and 63 and 73% for shoulder arthroplasties, and 79 and 68% for spine implants.ConclusionCRP and ESR have poor sensitivity for the diagnosis of shoulder implant infection. A CRP of 4.6 mg/l had a sensitivity of 79 and a specificity of 68% to detect infection of spine implants.
We aim to evaluate the epidemiology and outcome of gram-negative prosthetic joint infection (GN-PJI) treated with debridement, antibiotics and implant retention (DAIR), identify factors predictive of failure, and determine the impact of ciprofloxacin use on prognosis. We performed a retrospective, multicentre, observational study of GN-PJI diagnosed from 2003 through to 2010 in 16 Spanish hospitals. We define failure as persistence or reappearance of the inflammatory joint signs during follow-up, leading to unplanned surgery or repeat debridement>30 days from the index surgery related death, or suppressive antimicrobial therapy. Parameters predicting failure were analysed with a Cox regression model. A total of 242 patients (33% men; median age 76 years, interquartile range (IQR) 68-81) with 242 episodes of GN-PJI were studied. The implants included 150 (62%) hip, 85 (35%) knee, five (2%) shoulder and two (1%) elbow prostheses. There were 189 (78%) acute infections. Causative microorganisms were Enterobacteriaceae in 78%, Pseudomonas spp. in 20%, and other gram-negative bacilli in 2%. Overall, 19% of isolates were ciprofloxacin resistant. DAIR was used in 174 (72%) cases, with an overall success rate of 68%, which increased to 79% after a median of 25 months' follow-up in ciprofloxacin-susceptible GN-PJIs treated with ciprofloxacin. Ciprofloxacin treatment exhibited an independent protective effect (adjusted hazard ratio (aHR) 0.23; 95% CI, 0.13-0.40; p<0.001), whereas chronic renal impairment predicted failure (aHR, 2.56; 95% CI, 1.14-5.77; p 0.0232). Our results confirm a 79% success rate in ciprofloxacin-susceptible GN-PJI treated with debridement, ciprofloxacin and implant retention. New therapeutic strategies are needed for ciprofloxacin-resistant PJI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.