Renal cell carcinoma (RCC) represents a challenge for clinicians since the nonexistence of screening and monitoring tests contributes to the fact that one-third of patients are diagnosed with metastatic disease and 20–40% of the remaining patients will also develop metastasis. Modern medicine is now trying to establish circulating biomolecules as the gold standard of biomarkers. Among the molecules that can be released from tumor cells we can find microRNAs. The aim of this study was to evaluate the applicability of cancer-related miR-210, miR-218, miR-221 and miR-1233 as prognostic biomarkers for RCC. Patients with higher levels of miR-210, miR-221 and miR-1233 presented a higher risk of specific death by RCC and a lower cancer-specific survival. The addition of miR-210, miR-221 and miR-1233 plasma levels information improved the capacity to predict death by cancer in 8, 4% when compared to the current variables used by clinicians. We also verified that hypoxia stimulates the release of miR-210 and miR-1233 from HKC-8, RCC-FG2 and 786-O cell lines. These results support the addition of circulating microRNAs as prognostic biomarkers for RCC.
For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient’s data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe.
BackgroundFamilial intestinal gastric cancer (FIGC) remains genetically unexplained and without testing/clinical criteria. Herein, we characterised the age of onset and disease spectrum of 50 FIGC families and searched for genetic causes potentially underlying a monogenic or an oligogenic/polygenic inheritance pattern.MethodsNormal and tumour DNA from 50 FIGC probands were sequenced using Illumina custom panels on MiSeq, and their respective germline and somatic landscapes were compared with corresponding landscapes from sporadic intestinal gastric cancer (SIGC) and hereditary diffuse gastric cancer cohorts.ResultsThe most prevalent phenotype in FIGC families was gastric cancer, detected in 138 of 208 patients (50 intestinal gastric cancer probands and 88 unknown gastric cancer histology relatives), followed by colorectal and breast cancers. After excluding benign and intronic variants lacking impact in splicing, 12 rare high-quality variants were found exclusively in 11 FIGC probands. Only two probands carried potentially deleterious variants, but lacked somatic second-hits, weakly supporting the monogenic hypothesis for FIGC. However, FIGC probands developed gastric cancer at least 10 years earlier and carried more TP53 germline common variants than SIGC (p=4.5E-03); FIGC and SIGC could be distinguished by specific germline and somatic variant profiles; there was an excess of FIGC tumours presenting microsatellite instability (38%); and FIGC tumours displayed significantly more somatic common variants than SIGC tumours (p=4.2E-06).ConclusionThis study proposed the first data-driven testing criteria for FIGC families, and supported FIGC as a genetically determined, likely polygenic, gastric cancer-predisposing disease, with earlier onset and distinct from patients with SIGC at the germline and somatic levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.