Inspired by Ramsey’s theorem for pairs, Rival and Sands proved what we refer to as an inside/outside Ramsey theorem: every infinite graph G G contains an infinite subset H H such that every vertex of G G is adjacent to precisely none, one, or infinitely many vertices of H H . We analyze the Rival–Sands theorem from the perspective of reverse mathematics and the Weihrauch degrees. In reverse mathematics, we find that the Rival–Sands theorem is equivalent to arithmetical comprehension and hence is stronger than Ramsey’s theorem for pairs. We also identify a weak form of the Rival–Sands theorem that is equivalent to Ramsey’s theorem for pairs. We turn to the Weihrauch degrees to give a finer analysis of the Rival–Sands theorem’s computational strength. We find that the Rival–Sands theorem is Weihrauch equivalent to the double jump of weak König’s lemma. We believe that the Rival–Sands theorem is the first natural theorem shown to exhibit exactly this strength. Furthermore, by combining our result with a result of Brattka and Rakotoniaina, we obtain that solving one instance of the Rival–Sands theorem exactly corresponds to simultaneously solving countably many instances of Ramsey’s theorem for pairs. Finally, we show that the uniform computational strength of the weak Rival–Sands theorem is weaker than that of Ramsey’s theorem for pairs by showing that a number of well-known consequences of Ramsey’s theorem for pairs do not Weihrauch reduce to the weak Rival–Sands theorem. We also address an apparent gap in the literature concerning the relationship between Weihrauch degrees corresponding to the ascending/descending sequence principle and the infinite pigeonhole principle.
Inspired by Ramsey's theorem for pairs, Rival and Sands proved what we refer to as an inside/outside Ramsey theorem: every infinite graph G contains an infinite subset H such that every vertex of G is adjacent to precisely none, one, or infinitely many vertices of H. We analyze the Rival-Sands theorem from the perspective of reverse mathematics and the Weihrauch degrees. In reverse mathematics, we find that the Rival-Sands theorem is equivalent to arithmetical comprehension and hence is stronger than Ramsey's theorem for pairs. We also identify a weak form of the Rival-Sands theorem that is equivalent to Ramsey's theorem for pairs. We turn to the Weihrauch degrees to give a finer analysis of the Rival-Sands theorem's computational strength. We find that the Rival-Sands theorem is Weihrauch equivalent to the double jump of weak König's lemma. We believe that the Rival-Sands theorem is the first natural theorem shown to exhibit exactly this strength. Furthermore, by combining our result with a result of Brattka and Rakotoniaina, we obtain that solving one instance of the Rival-Sands theorem exactly corresponds to simultaneously solving countably many instances of Ramsey's theorem for pairs. Finally, we show that the uniform computational strength of the weak Rival-Sands theorem is weaker than that of Ramsey's theorem for pairs by showing that a number of well-known consequences of Ramsey's theorem for pairs do not Weihrauch reduce to the weak Rival-Sands theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.