Bone disease is among the defining characteristics of symptomatic Multiple Myeloma (MM). Imaging techniques such as fluorodeoxyglucose positron emission tomography–computed tomography (FDG PET/CT) and magnetic resonance imaging (MRI) can identify plasma cell proliferation and quantify disease activity. This function renders these imaging tools as suitable not only for diagnosis, but also for the assessment of bone disease after treatment of MM patients. The aim of this article is to review FDG PET/CT and MRI and their applications, with a focus on their role in treatment response evaluation. MRI emerges as the technique with the highest sensitivity in lesions’ detection and PET/CT as the technique with a major impact on prognosis. Their comparison yields different results concerning the best tool to evaluate treatment response. The inhomogeneity of the data suggests the need to address limitations related to these tools with the employment of new techniques and the potential for a complementary use of both PET/CT and MRI to refine the sensitivity and achieve the standards for minimal residual disease (MRD) evaluation.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.