Butyric acid (BA) is a short-chain fatty acid (SCFA) produced by gut bacteria in the colon. We hypothesized that colon-derived BA may affect hemodynamics. Arterial blood pressure (BP) and heart rate (HR) were recorded in anesthetized, male, 14-week-old Wistar rats. A vehicle, BA, or 3-hydroxybutyrate, an antagonist of SCFA receptors GPR41/43 (ANT) were administered intravenously (IV) or into the colon (IC). Reactivity of mesenteric (MA) and gracilis muscle (GMA) arteries was tested ex vivo. The concentration of BA in stools, urine, portal, and systemic blood was measured with liquid chromatography coupled with mass spectrometry. BA administered IV decreased BP with no significant effect on HR. The ANT reduced, whereas L-NAME, a nitric oxide synthase inhibitor, did not affect the hypotensive effect of BA. In comparison to BA administered intravenously, BA administered into the colon produced a significantly longer decrease in BP and a decrease in HR, which was associated with a 2–3-fold increase in BA colon content. Subphrenic vagotomy and IC pretreatment with the ANT significantly reduced the hypotensive effect. Ex vivo, BA dilated MA and GMA. In conclusion, an increase in the concentration of BA in the colon produces a significant hypotensive effect which depends on the afferent colonic vagus nerve signaling and GPR41/43 receptors. BA seems to be one of mediators between gut microbiota and the circulatory system.Electronic supplementary materialThe online version of this article (10.1007/s00424-019-02322-y) contains supplementary material, which is available to authorized users.
Recent evidence suggests that tryptophan, an essential amino acid, may exert biological effects by means of tryptophan-derived gut bacteria products. We evaluated the potential contribution of tryptophan-derived bacterial metabolites to body weight gain. The study comprised three experimental series performed on separate groups of male, Sprague-Dawley rats: (i) rats on standard laboratory diet treated with water solution of neomycin, an antibiotic, or tap water (controls-1); (ii) rats on standard diet (controls-2) or tryptophan-high (TH) or tryptophan-free (TF) diet; and (iii) rats treated with indole-3-propionic acid (I3P), a bacterial metabolite of tryptophan, or a vehicle (controls-3). (i) Rats treated with neomycin showed a significantly higher weight gain but lower stool and blood concentration of I3P than controls-1. (ii) The TH group showed significantly smaller increases in body weight but higher stool and plasma concentration of I3P than controls-2. In contrast, the TF group showed a decrease in body weight, decreased total serum protein and a significant increase in urine output. (iii) Rats treated with I3P showed significantly smaller weight gain than controls-3. Our study suggests that I3P, a gut bacteria metabolite of tryptophan, contributes to changes in body weight gain produced by antibiotics and tryptophan-rich diet.
Trimethylamine-oxide (TMAO) is present in seafood which is considered to be beneficial for health. Deep-water animals accumulate TMAO to protect proteins, such as lactate dehydrogenase (LDH), against hydrostatic pressure stress (HPS). We hypothesized that TMAO exerts beneficial effects on the circulatory system and protects cardiac LDH exposed to HPS produced by the contracting heart. Male, Sprague-Dawley and Spontaneously-Hypertensive-Heart-Failure (SHHF) rats were treated orally with either water (control) or TMAO. In vitro, LDH with or without TMAO was exposed to HPS and was evaluated using fluorescence correlation spectroscopy. TMAO-treated rats showed higher diuresis and natriuresis, lower arterial pressure and plasma NT-proBNP. Survival in SHHF-control was 66% vs 100% in SHHF-TMAO. In vitro, exposure of LDH to HPS with or without TMAO did not affect protein structure. In conclusion, TMAO reduced mortality in SHHF, which was associated with diuretic, natriuretic and hypotensive effects. HPS and TMAO did not affect LDH protein structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.