Paints based on cadmium sulfide (CdS) were popular among artists beginning in the mid-19th century. Some paint formulations are prone to degrade, discoloring and disfiguring paintings where they have been used. Pablo Picasso's Femme (E ́poque des "Demoiselles d'Avignon") (1907) includes two commercial formulations of CdS: one is visibly degraded and now appears brownish yellow, while the other appears relatively intact and is vibrant yellow. This observation inspired the study reported here of the photoluminescence emission from trap states of the two CdS paints, complemented by data from multispectral imaging, Xray fluorescence spectroscopy, micro-FTIR, and SEM-EDS. The two paints exhibit trap state emissions that differ in terms of spectrum, intensity, and decay kinetics. In the now-brownish yellow paint, trap state emission is highly favored with respect to near band edge optical recombination. This observation suggests a higher density of surface defects in the now-brownish yellow paint that promotes the surface reactivity of CdS particles and their subsequent paint degradation. CdS is a semiconductor, and surface defects in semiconductors can trap free charge carriers; this interaction becomes stronger at reduced particle size or, equivalently, with increased surface to volume ratio. Here, we speculate that the strong trap state emission in the now-brownish cadmium yellow paint is linked to the presence of CdS particles with a nanocrystalline phase, possibly resulting from a low degree of calcination during pigment synthesis. Taken together, the results presented here demonstrate how photoluminescence studies can probe surface defects in CdS paints and lead to an improved understanding of their complex degradation mechanisms.
The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines—ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses—with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Recent studies have shown that modern pigments produced after the Second Industrial Revolution are complex systems characterized by a high level of heterogeneities. Therefore, it is fundamental to adopt a multianalytical approach and highly sensitive methods to characterize the impurities present within pigments. In this work we propose time-resolved and spectrally resolved photoluminescence (PL) microscopy for the mapping of luminescent crystal defects and impurities in historical cadmium-based pigments. PL analysis is complemented by X-ray diffraction, X-ray fluorescence and Raman spectroscopies, and by scanning electron microscopy to determine the chemical composition and crystal structure of samples. The study highlights the heterogeneous and complex nature of historical samples that can be associated with the imperfect manufacturing processes tested during the period between the 1850s and 1950s. The results also allow us to speculate on a range of synthesis processes. Since it is recognized that the stability of paints can be related to pigments synthesis, this research paves the way to a wider study on the relationship between synthesis methods and deterioration of cadmium pigments and paints. This rapid and immediate approach using PL can be applied to other semiconductor pigments and real case studies.
In conservation science, the identification of painting materials is fundamental for the study of artists' palettes, for dating and for understanding ongoing degradation phenomena. For these purposes, the study of stratigraphic micro-samples provides unique information on the complex heterogeneity of the pictorial artworks. In this context, we propose a combined-microscopy approach based on the application of time-resolved photoluminescence (TRPL) micro-imaging and micro-Raman spectroscopy. The TRPL device is based on pulsed laser excitation (excitation wavelength = 355 nm, 1 ns pulse width) and time-gated detection, and it is suitable for the detection of photoluminescent emissions with lifetime from few nanoseconds to hundreds of microseconds. In this work, the technique is beneficially applied for identifying different luminescent semiconductor and mineral pigments, on the basis of their spectral and decay kinetic emission properties. The spatial heterogeneities, detected in the micro-sample, are investigated with Raman spectroscopy (785-nm in CW mode) for a further identification of the paint composition on basis of the molecular vibrations associated with the crystal structure. The effectiveness and limits of the proposed combined method is discussed through analysis of a corpus of stratigraphic micro-samples from Russian Avant-garde modern paintings. In the selected samples, the method allows the identification of modern inorganic pigments such as cadmium-based pigments, zinc white, titanium white, chrome yellow, ultramarine and cinnabar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.