CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.
Epistasis refers to the dependence of a mutation on other mutation(s) and the genetic context in general. In the context of human disorders, epistasis complicates the spectrum of disease symptoms and has been proposed as a major contributor to variations in disease outcome. The nonadditive relationship between mutations and the lack of complete understanding of the underlying physiological effects limit our ability to predict phenotypic outcome. Here, we report positive epistasis between intragenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)—the gene responsible for cystic fibrosis (CF) pathology. We identified a synonymous single-nucleotide polymorphism (sSNP) that is invariant for the CFTR amino acid sequence but inverts translation speed at the affected codon. This sSNP in cis exhibits positive epistatic effects on some CF disease–causing missense mutations. Individually, both mutations alter CFTR structure and function, yet when combined, they lead to enhanced protein expression and activity. The most robust effect was observed when the sSNP was present in combination with missense mutations that, along with the primary amino acid change, also alter the speed of translation at the affected codon. Functional studies revealed that synergistic alteration in ribosomal velocity is the underlying mechanism; alteration of translation speed likely increases the time window for establishing crucial domain–domain interactions that are otherwise perturbed by each individual mutation.
The neuronal ceroid lipofuscinoses (NCLs) are a family of monogenic life-limiting pediatric neurodegenerative disorders collectively known as Batten disease. Although genetically heterogeneous, NCLs share several clinical symptoms and pathological hallmarks such as lysosomal accumulation of lipofuscin and astrogliosis. CLN7 disease belongs to a group of NCLs that present in late infancy4-6 and, whereas CLN7/MFSD8 gene is known to encode a lysosomal membrane glycoprotein, the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found in the Cln7Δex2 mouse model11 of CLN7 disease that failure in the autophagy-lysosomal pathway causes accumulation of structurally and bioenergetically impaired, reactive oxygen species (ROS)-producing neuronal mitochondria that contribute to CLN7 pathogenesis. Cln7Δex2 neurons exhibit a metabolic shift mediated by pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). PFKFB3 inhibition in Cln7Δex2 mice in vivo and in CLN7 patients-derived cells rectified key disease hallmarks. Thus, specifically targeting glycolysis may alleviate CLN7 pathogenesis.
The variant late infantile form of the inherited neurodegenerative Batten disease (BD) is caused by mutations in the CLN7/MFSD8 gene and represents a strong candidate for gene therapy. Post-natal intracerebral administration of AAV9-hCLN7 to Cln7Δex2 knockout mice resulted in extended lifespan but dose escalation resulted in reduced acuity in neurophysiology tests, cerebral atrophy and elevated neuroinflammation. Comparing patient and control iPSC-derived neural progenitor cells (iNPC) we discovered that CLN7 localizes to the nucleus as well as the endolysosomal network and is differentially distributed in BD iNPC. Proteomics identified a profound nuclear defect in BD iNPC that compounds with mitochondrial and lysosomal metabolic defects resulting in elevated apoptosis. We further identified a 50kDa common nuclear CLN7 isoform and a 37kDa isoform that accumulates only in BD iNPC nuclei. Our findings suggest that successful treatment of CLN7 BD will require combinatorial therapies addressing both loss and aberrant gain of protein function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.