A bronze kettle dating from the 1st to 2nd century was found in a riverbed of the Kupa river in Croatia. After excavation it spent another 50 years in a depot of a museum in atmospheric conditions prior to starting the conservation treatment and our studies. A study on the surface layers development was performed to determine the whereabouts of the object through its history. This study is a demonstration of how such analysis can be used to reconstruct what the object went through during its life span. Samples taken from the kettle were observed by optical and scanning electron microscopy (SEM), and analysed by X-ray fluorescence (XRF), X-ray energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR).It was determined that the kettle is made of low-tin bronze, with low amounts of iron, aluminium, calcium and nickel. While being in the riverbed malachite formed on the kettle. After longer exposure to the river Si-oxides and CaCO3 formed on the surface of the kettle, over malachite. It was shown that the kettle probably had a ferrous alloy handle which degraded and disappeared in time. After excavation, the kettle came again in an oxygen-enriched atmosphere and formed new surface layers over the malachite layer. As the museum the kettle has been kept in since excavation is set in a highly industrial area sulphur compounds have been formed on the surface.
A bronze kettle dating from the 1st to 2nd Century was found in a riverbed of the Kupa river in Croatia. After excavation it spent another 50 years in a depot of a museum in atmospheric conditions prior to starting the conservation treatment and our studies. A study on the surface layers development was performed to determine the history of the object. This study is a demonstration of how such analysis can be used to reconstruct what the object went through during its life span.It was determined that the kettle is made of low-tin bronze, called mild bronze, with addition of iron, aluminum, calcium and nickel. Using iron for alloying copper is unusual since pure iron is generally not added to bronze, thus the presented case is a rare subject. Presence of cassiterite SnO2 showed that the kettle was used for preparing food on open fire prior to ending up in the river. While being in the riverbed malachite formed on the kettle. After longer exposure to the river Si-oxides and CaCO3 formed on the surface of the kettle, over malachite. It was shown that the kettle probably had a ferrous alloy handle which degraded and disappeared in time. After excavation, the kettle came again in an oxygen-enriched atmosphere and developed additional surface layers over the malachite layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.