Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups — wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ∼21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.
BackgroundHox proteins specify segment identity during embryogenesis and have typical associated expression patterns. Changes in embryonic expression and activity of Hox genes were crucial in the evolution of animal body plans, but their role in the post-embryonic development of lineage-specific traits remains largely unexplored. Here, we focus on the insect Hox genes Ultrabithorax (Ubx) and Antennapedia (Antp), and implicate the latter in the formation and diversification of novel, butterfly-specific wing patterns.ResultsFirst, we describe a conserved pattern of Ubx expression and a novel pattern of Antp expression in wing discs of Bicyclus anynana butterflies. The discrete, reiterated domains of Antp contrast with the typical expression of Hox genes in single continuous regions in arthropod embryos. Second, we show that this pattern is associated with the establishment of the organizing centres of eyespots. Antp upregulation is the earliest event in organizer development described to date, and in contrast to all genes implicated in eyespot formation, is exclusive to those centres. Third, our comparative analysis of gene expression across nymphalids reveals unexpected differences in organizer determination.ConclusionsWe show that the Antp's recruitment for the formation of novel traits in butterfly wing discs involved the evolution of new expression domains, and is restricted to a particular lineage. This study contributes novel insights into the evolution of Antp expression, as well as into the genetic mechanisms underlying morphological diversification. Our results also underscore how a wider representation of morphological and phylogenetic diversity is essential in evolutionary developmental biology.
Wolbachia, endosymbionts that reside naturally in up to 40–70% of all insect species, are some of the most prevalent intracellular bacteria. Both Wolbachia wAu, naturally associated with Drosophila simulans, and wMel, native to Drosophila melanogaster, have been previously described to protect their hosts against viral infections. wMel transferred to D. simulans was also shown to have a strong antiviral effect. Here we directly compare one of the most protective wMel variants and wAu in D. melanogaster in the same host genetic background. We conclude that wAu protects better against viral infections, it grows exponentially and significantly shortens the lifespan of D. melanogaster. However, there is no difference between wMel and wAu in the expression of selected antimicrobial peptides. Therefore, neither the difference in anti-viral effect nor the life-shortening could be attributed to the immune stimulation by exogenous Wolbachia. Overall, we prove that stable transinfection with a highly protective Wolbachia is not necessarily associated with general immune activation.
Insects are often infected with beneficial intracellular bacteria. The bacterium Wolbachia is extremally common in insects and can protect them from pathogenic viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.